32
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sensitivity in Detection of Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in Patients With Coronavirus Disease 2019

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), is associated with respiratory-related disease and death. Assays to detect virus-specific antibodies are important to understand the prevalence of infection and the course of the immune response.

          Methods

          Quantitative measurements of plasma or serum antibodies to the nucleocapsid and spike proteins were analyzed using luciferase immunoprecipitation system assays in 100 cross-sectional or longitudinal samples from patients with SARS-CoV-2 infection. A subset of samples was tested both with and without heat inactivation.

          Results

          At >14 days after symptom onset, antibodies against SARS-CoV-2 nucleocapsid protein showed 100% sensitivity and 100% specificity, whereas antibodies to spike protein were detected with 91% sensitivity and 100% specificity. Neither antibody levels nor the rate of seropositivity were significantly reduced by heat inactivation of samples. Analysis of daily samples from 6 patients with COVID-19 showed anti-nucleocapsid and spike protein antibodies appearing between days 8 and 14 after initial symptoms. Immunocompromised patients generally had a delayed antibody response to SARS-CoV-2, compared with immunocompetent patients.

          Conclusions

          Antibody to the nucleocapsid protein of SARS-CoV-2 is more sensitive than spike protein antibody for detecting early infection. Analyzing heat-inactivated samples with a luciferase immunoprecipitation system assay is a safe and sensitive method for detecting SARS-CoV-2 antibodies.

          Abstract

          An immunoprecipitation assay detected antibody to severe acute respiratory syndrome coronavirus 2 nucleocapsid protein with high sensitivity and specificity even after heat inactivation of plasma. This assay was more sensitive than detection of antibody to the spike protein.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Novel Coronavirus from Patients with Pneumonia in China, 2019

            Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A pneumonia outbreak associated with a new coronavirus of probable bat origin

              Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
                Bookmark

                Author and article information

                Journal
                J Infect Dis
                J. Infect. Dis
                jid
                The Journal of Infectious Diseases
                Oxford University Press (US )
                0022-1899
                1537-6613
                19 May 2020
                : jiaa273
                Affiliations
                [1 ] National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland, USA
                [2 ] Division of Infectious Diseases and Travel Medicine, Evergreen Health , Kirkland, Washington, USA
                [3 ] Department of Laboratory Medicine, University of Washington , Seattle, Washington, USA
                [4 ] Division of Infectious Diseases and Global Public Health, San Diego Center for AIDS Research, University of California San Diego , San Diego, California, USA
                [5 ] Department of Laboratory Medicine, Clinical Center, National Institutes of Health , Bethesda, Maryland, USA
                [6 ] Critical Care Medicine Department, Clinical Center, National Institutes of Health , Bethesda, Maryland, USA
                [7 ] Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland, USA
                [8 ] Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland, USA
                Author notes
                Correspondence: Jeffrey I. Cohen, Bldg 50, Room 6134, 50 South Dr, MSC8007, National Institutes of Health, Bethesda, MD 20892 ( jcohen@ 123456niaid.nih.gov ).
                Article
                jiaa273
                10.1093/infdis/jiaa273
                7313936
                32427334
                90f33f14-f193-4b5f-bc15-ab69c807af7d
                Published by Oxford University Press for the Infectious Diseases Society of America 2020.

                This work is written by (a) US Government employee(s) and is in the public domain in the US.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 14 April 2020
                : 12 May 2020
                : 16 May 2020
                : 03 June 2020
                Page count
                Pages: 8
                Categories
                Major Article
                AcademicSubjects/MED00860
                AcademicSubjects/MED00290
                Custom metadata
                PAP
                corrected-proof

                Infectious disease & Microbiology
                covid-19,coronavirus,sars-cov-2,serology
                Infectious disease & Microbiology
                covid-19, coronavirus, sars-cov-2, serology

                Comments

                Comment on this article