3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phage display screening of therapeutic peptide for cancer targeting and therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.

          Related collections

          Most cited references 174

          • Record: found
          • Abstract: found
          • Article: not found

          Novel anticancer targets: revisiting ERBB2 and discovering ERBB3.

          Aberrant receptor expression or functioning of the epidermal growth factor receptor (Erbb) family plays a crucial part in the development and evolution of cancer. Inhibiting the signalling activity of individual receptors in this family has advanced the treatment of a range of human cancers. In this Review we re-evaluate the role of two important family members, ERBB2 (also known as HER2) and ERBB3 (also known as HER3), and explore the mechanisms of action and preclinical and clinical data for new therapies that target signalling through these pivotal receptors. These new therapies include tyrosine kinase inhibitors, antibody-chemotherapy conjugates, heat-shock protein inhibitors and antibodies that interfere with the formation of ERBB2-ERBB3 dimers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface.

             Jeffrey Smith (1985)
            Foreign DNA fragments can be inserted into filamentous phage gene III to create a fusion protein with the foreign sequence in the middle. The fusion protein is incorporated into the virion, which retains infectivity and displays the foreign amino acids in immunologically accessible form. These "fusion phage" can be enriched more than 1000-fold over ordinary phage by affinity for antibody directed against the foreign sequence. Fusion phage may provide a simple way of cloning a gene when an antibody against the product of that gene is available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organ targeting in vivo using phage display peptide libraries.

              Preferential homing of tumour cells and leukocytes to specific organs indicates that tissues carry unique marker molecules accessible to circulating cells. Organ-selective address molecules on endothelial surfaces have been identified for lymphocyte homing to various lymphoid organs and to tissues undergoing inflammation, and an endothelial marker responsible for tumour homing to the lungs has also been identified. Here we report a new approach to studying organ-selective targeting based on in vivo screening of random peptide sequences. Peptides capable of mediating selective localization of phage to brain and kidney blood vessels were identified, and showed up to 13-fold selectivity for these organs. One of the peptides displayed by the brain-localizing phage was synthesized and shown to specifically inhibit the localization of the homologous phage into the brain. When coated onto glutaraldehyde-fixed red blood cells, the peptide caused selective localization of intravenously injected cells into the brain. These peptide sequences represent the first step towards identifying selective endothelial markers, which may be useful in targeting cells, drugs and genes into selected tissues.
                Bookmark

                Author and article information

                Contributors
                songew@mail.sysu.edu.cn
                Journal
                Protein Cell
                Protein Cell
                Protein & Cell
                Higher Education Press (Beijing )
                1674-800X
                1674-8018
                28 May 2019
                28 May 2019
                November 2019
                : 10
                : 11
                : 787-807
                Affiliations
                [1 ]GRID grid.12981.33, ISNI 0000 0001 2360 039X, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, , Sun Yat-sen University, ; Guangzhou, 510120 China
                [2 ]GRID grid.12981.33, ISNI 0000 0001 2360 039X, Breast Tumor Center, Sun Yat-sen Memorial Hospital, , Sun Yat-sen University, ; Guangzhou, 510120 China
                Article
                639
                10.1007/s13238-019-0639-7
                6834755
                31140150
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Comments

                Comment on this article