21
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DeCoST: A New Approach in Drug Repurposing From Control System Theory

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we propose DeCoST (Drug Repurposing from Control System Theory) framework to apply control system paradigm for drug repurposing purpose. Drug repurposing has become one of the most active areas in pharmacology since the last decade. Compared to traditional drug development, drug repurposing may provide more systematic and significantly less expensive approaches in discovering new treatments for complex diseases. Although drug repurposing techniques rapidly evolve from “one: disease-gene-drug” to “multi: gene, dru” and from “lazy guilt-by-association” to “systematic model-based pattern matching,” mathematical system and control paradigm has not been widely applied to model the system biology connectivity among drugs, genes, and diseases. In this paradigm, our DeCoST framework, which is among the earliest approaches in drug repurposing with control theory paradigm, applies biological and pharmaceutical knowledge to quantify rich connective data sources among drugs, genes, and diseases to construct disease-specific mathematical model. We use linear–quadratic regulator control technique to assess the therapeutic effect of a drug in disease-specific treatment. DeCoST framework could classify between FDA-approved drugs and rejected/withdrawn drug, which is the foundation to apply DeCoST in recommending potentially new treatment. Applying DeCoST in Breast Cancer and Bladder Cancer, we reprofiled 8 promising candidate drugs for Breast Cancer ER+ (Erbitux, Flutamide, etc.), 2 drugs for Breast Cancer ER- (Daunorubicin and Donepezil) and 10 drugs for Bladder Cancer repurposing (Zafirlukast, Tenofovir, etc.).

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          limma powers differential expression analyses for RNA-sequencing and microarray studies

          limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
            • Record: found
            • Abstract: found
            • Article: not found

            The meaning and use of the area under a receiver operating characteristic (ROC) curve.

            A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              NCBI GEO: archive for functional genomics data sets—update

              The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All data are freely available for download in a variety of formats. GEO also provides several web-based tools and strategies to assist users to query, analyse and visualize data. This article reports current status and recent database developments, including the release of GEO2R, an R-based web application that helps users analyse GEO data.

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                05 June 2018
                2018
                : 9
                : 583
                Affiliations
                [1] 1Department of Computer and Information Science, Indiana University-Purdue University Indianapolis , Indianapolis, IN, United States
                [2] 2Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University , Multan, Pakistan
                [3] 3Department of Biology, School of Science, Indiana University-Purdue University Indianapolis , Indianapolis, IN, United States
                [4] 4The 1st School of Medicine and School of Information and Engineering, Wenzhou Medical University , Zhejiang, China
                [5] 5Institute of Lasers and Biomedical Photonics, Wenzhou Medical University , Wenzhou, China
                Author notes

                Edited by: Lixia Yao, Mayo Clinic, United States

                Reviewed by: Yanshan Wang, Mayo Clinic, United States; Fuhai Li, The Ohio State University, United States; Zhichao Liu, National Center for Toxicological Research (FDA), United States

                *Correspondence: Thanh M. Nguyen thamnguy@ 123456iupui.edu

                This article was submitted to Translational Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.00583
                5996185
                29922160
                90f4e823-0944-4436-9908-e4f89e67336b
                Copyright © 2018 Nguyen, Muhammad, Ibrahim, Ma, Guo, Bai and Zeng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 March 2018
                : 15 May 2018
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 87, Pages: 12, Words: 9005
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                drug repurposing,system control,breast cancer,bladder cancer,pathway,expression profile

                Comments

                Comment on this article

                Related Documents Log