2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NLRP3 inflammasome-dependent pyroptosis and apoptosis in hippocampus neurons mediates depressive-like behavior in diabetic mice

      , , , , , ,
      Behavioural Brain Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin

          Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme-/- (also known as Dfna5-/-) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.

            Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms and functions of inflammasomes.

              Recent studies have offered a glimpse into the sophisticated mechanisms by which inflammasomes respond to danger and promote secretion of interleukin (IL)-1β and IL-18. Activation of caspases 1 and 11 in canonical and noncanonical inflammasomes, respectively, also protects against infection by triggering pyroptosis, a proinflammatory and lytic mode of cell death. The therapeutic potential of inhibiting these proinflammatory caspases in infectious and autoimmune diseases is raised by the successful deployment of anti-IL-1 therapies to control autoinflammatory diseases associated with aberrant inflammasome signaling. This Review summarizes recent insights into inflammasome biology and discusses the questions that remain in the field. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Behavioural Brain Research
                Behavioural Brain Research
                Elsevier BV
                01664328
                August 2020
                August 2020
                : 391
                : 112684
                Article
                10.1016/j.bbr.2020.112684
                32454054
                90f51106-7cd6-4860-b2cc-7d177519758d
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article