Blog
About

14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Stellar Population of Lyman-alpha Emitting Galaxies at z ~ 5.7

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a study of three Lyman-alpha emitting galaxies (LAEs), selected via a narrow-band survey in the GOODS northern field, and spectroscopically confirmed to have redshifts of z ~ 5.65. Using HST ACS and Spitzer IRAC data, we constrain the rest-frame UV-to-optical spectral energy distributions (SEDs) of the galaxies. Fitting stellar population synthesis models to the observed SEDs, we find best-fit stellar populations with masses between ~ 10^9 - 10^10 M_sun and ages between ~ 5 - 100 Myr, assuming a simple starburst star formation history. However, stellar populations as old as 700 Myr are admissible if a constant star formation rate model is considered. Very deep near-IR observations may help to narrow the range of allowed models by providing extra constraints on the rest-frame UV spectral slope. Our narrow-band selected objects and other IRAC-detected z ~ 6 i'-dropout galaxies have similar 3.6 um magnitudes and z' - [3.6] colors, suggesting that they posses stellar populations of similar masses and ages. This similarity may be the result of a selection bias, since the IRAC-detected LAEs and i'-dropouts probably only sample the bright end of the luminosity function. On the other hand, our LAEs have blue i' - z' colors compared to the i'-dropouts, and would have been missed by the i'-dropout selection criterion. A better understanding of the overlap between the LAE and the i'-dropout populations is necessary in order to constrain the properties of the overall high-redshift galaxy population, such as the total stellar mass density at z ~ 6.

          Related collections

          Author and article information

          Journal
          19 October 2006
          10.1086/510285
          astro-ph/0610572
          Custom metadata
          Astrophys.J.655:704-713,2007
          10 pages, 8 figures. Accepted for publication in ApJ
          astro-ph

          Comments

          Comment on this article