• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Chromosome aberrations frequency in peripheral blood lymphocytes in young tobacco smoking and non-smoking people

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Introduction:Cigarette smoking is associated with severe health problems, especially cancers. In addition, cigarette smoking causes different genotoxic effects. Chromosome aberrations are one of well-known intermediate end points in carcinogenesis. The aim of this study was to compare frequencies of chromosome aberrations in peripheral blood lymphocytes between young smokers and non-smokes groups.Methods:The study was conducted with 30 smokers (average age 26.93 years) and 30 non-smokers (average age 26.96 years), and included the analysis of 100 metaphases per each blood sample. Differences in the arithmetic means of determined frequencies of chromosome aberrations were tested by two-tailed t-test for independent samples with the significance level of p < 0.05.Results:The results showed a significant increase in the frequencies of chromatid-type aberrations and total structural chromosome aberrations in smoker group. Frequencies of numerical aberrations did not differ significantly between two groups.Conclusions:This study confirmed genotoxicity of cigarette smoking and provided new evidence about its clastogenic activity.

      Related collections

      Most cited references 48

      • Record: found
      • Abstract: found
      • Article: not found

      Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells.

      Micronuclei (MN) and other nuclear anomalies such as nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) are biomarkers of genotoxic events and chromosomal instability. These genome damage events can be measured simultaneously in the cytokinesis-block micronucleus cytome (CBMNcyt) assay. The molecular mechanisms leading to these events have been investigated over the past two decades using molecular probes and genetically engineered cells. In this brief review, we summarise the wealth of knowledge currently available that best explains the formation of these important nuclear anomalies that are commonly seen in cancer and are indicative of genome damage events that could increase the risk of developmental and degenerative diseases. MN can originate during anaphase from lagging acentric chromosome or chromatid fragments caused by misrepair of DNA breaks or unrepaired DNA breaks. Malsegregation of whole chromosomes at anaphase may also lead to MN formation as a result of hypomethylation of repeat sequences in centromeric and pericentromeric DNA, defects in kinetochore proteins or assembly, dysfunctional spindle and defective anaphase checkpoint genes. NPB originate from dicentric chromosomes, which may occur due to misrepair of DNA breaks, telomere end fusions, and could also be observed when defective separation of sister chromatids at anaphase occurs due to failure of decatenation. NBUD represent the process of elimination of amplified DNA, DNA repair complexes and possibly excess chromosomes from aneuploid cells.
        • Record: found
        • Abstract: found
        • Article: not found

        An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans.

        The frequency of micronuclei (MN) in peripheral blood lymphocytes (PBL) is extensively used as a biomarker of chromosomal damage and genome stability in human populations. Much theoretical evidence has been accumulated supporting the causal role of MN induction in cancer development, although prospective cohort studies are needed to validate MN as a cancer risk biomarker. A total of 6718 subjects from of 10 countries, screened in 20 laboratories for MN frequency between 1980 and 2002 in ad hoc studies or routine cytogenetic surveillance, were selected from the database of the HUman MicroNucleus (HUMN) international collaborative project and followed up for cancer incidence or mortality. To standardize for the inter-laboratory variability subjects were classified according to the percentiles of MN distribution within each laboratory as low, medium or high frequency. A significant increase of all cancers incidence was found for subjects in the groups with medium (RR=1.84; 95% CI: 1.28-2.66) and high MN frequency (RR=1.53; 1.04-2.25). The same groups also showed a decreased cancer-free survival, i.e. P=0.001 and P=0.025, respectively. This association was present in all national cohorts and for all major cancer sites, especially urogenital (RR=2.80; 1.17-6.73) and gastro-intestinal cancers (RR=1.74; 1.01-4.71). The results from the present study provide preliminary evidence that MN frequency in PBL is a predictive biomarker of cancer risk within a population of healthy subjects. The current wide-spread use of the MN assay provides a valuable opportunity to apply this assay in the planning and validation of cancer surveillance and prevention programs.
          • Record: found
          • Abstract: found
          • Article: not found

          Genotoxicity of tobacco smoke and tobacco smoke condensate: a review.

          This report reviews the literature on the genotoxicity of mainstream tobacco smoke and cigarette smoke condensate (CSC) published since 1985. CSC is genotoxic in nearly all systems in which it has been tested, with the base/neutral fractions being the most mutagenic. In rodents, cigarette smoke induces sister chromatid exchanges (SCEs) and micronuclei in bone marrow and lung cells. In humans, newborns of smoking mothers have elevated frequencies of HPRT mutants, translocations, and DNA strand breaks. Sperm of smokers have elevated frequencies of aneuploidy, DNA adducts, strand breaks, and oxidative damage. Smoking also produces mutagenic cervical mucus, micronuclei in cervical epithelial cells, and genotoxic amniotic fluid. These data suggest that tobacco smoke may be a human germ-cell mutagen. Tobacco smoke produces mutagenic urine, and it is a human somatic-cell mutagen, producing HPRT mutations, SCEs, microsatellite instability, and DNA damage in a variety of tissues. Of the 11 organ sites at which smoking causes cancer in humans, smoking-associated genotoxic effects have been found in all eight that have been examined thus far: oral/nasal, esophagus, pharynx/larynx, lung, pancreas, myeoloid organs, bladder/ureter, uterine cervix. Lung tumors of smokers contain a high frequency and unique spectrum of TP53 and KRAS mutations, reflective of the PAH (and possibly other) compounds in the smoke. Further studies are needed to clarify the modulation of the genotoxicity of tobacco smoke by various genetic polymorphisms. These data support a model of tobacco smoke carcinogenesis in which the components of tobacco smoke induce mutations that accumulate in a field of tissue that, through selection, drive the carcinogenic process. Most of the data reviewed here are from studies of human smokers. Thus, their relevance to humans cannot be denied, and their explanatory powers not easily dismissed. Tobacco smoke is now the most extreme example of a systemic human mutagen.

            Author and article information

            [1 ]Laboratory for Cytogenetics and Genotoxicology, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
            [2 ]Center for Genetics, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
            Author notes
            [* ]Corresponding author: Anja Haverić, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina, Tel.: +38733220926, Fax: +38733442891. E-mail: anja.haveric@
            Journal of Health Sciences
            University of Sarajevo Faculty of Health Studies (Bosnia )
            : 6
            : 2
            : 121-127
            Copyright: © 2016 Anja Haverić et al.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Self URI (journal page):


            Comment on this article