36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stromal cells reset the scatter factor system and cytokine network in experimental kidney transplantation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In former studies we showed in a rat model of renal transplantation that Mesenchymal Stromal Cells (MSC) prevent acute rejection in an independent way of their endowing in the graft. In this study we investigated whether MSC operate by resetting cytokine network and Scatter Factor systems, i.e. Hepatocyte Growth Factor (HGF), Macrophage Stimulating Protein (MSP) and their receptors Met and RON, respectively.

          Methods

          MSC were injected into the renal artery soon after reperfusion. Controls were grafted untreated and normal rats. Rats were sacrificed 7 days after grafting. Serum and renal tissue levels of IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-10, MSP/RON, HGF/Met systems, Treg lymphocytes were investigated.

          Results

          In grafted untreated rats IFN-γ increased in serum and renal tissue and IL-6 rose in serum. MSC prevented both the phenomena, increased IL-10 serum levels and Treg number in the graft. Furthermore MSC increased serum and tissue HGF levels, Met tubular expression and prevented the suppression of tubular MSP/RON expression.

          Conclusions

          Our results demonstrate that MSC modify cytokine network to a tolerogenic setting, they suppress Th1 cells, inactivate monocytes/macrophage, recruit Tregs. In addition, MSC sustain the expression of the Scatter Factor systems expression, i.e. systems that are committed to defend survival and stimulate regeneration of tubular cells.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.

          Severe acute renal failure (ARF) remains a common, largely treatment-resistant clinical problem with disturbingly high mortality rates. Therefore, we tested whether administration of multipotent mesenchymal stem cells (MSC) to anesthetized rats with ischemia-reperfusion-induced ARF (40-min bilateral renal pedicle clamping) could improve the outcome through amelioration of inflammatory, vascular, and apoptotic/necrotic manifestations of ischemic kidney injury. Accordingly, intracarotid administration of MSC (approximately 10(6)/animal) either immediately or 24 h after renal ischemia resulted in significantly improved renal function, higher proliferative and lower apoptotic indexes, as well as lower renal injury and unchanged leukocyte infiltration scores. Such renoprotection was not obtained with syngeneic fibroblasts. Using in vivo two-photon laser confocal microscopy, fluorescence-labeled MSC were detected early after injection in glomeruli, and low numbers attached at microvasculature sites. However, within 3 days of administration, none of the administered MSC had differentiated into a tubular or endothelial cell phenotype. At 24 h after injury, expression of proinflammatory cytokines IL-1beta, TNF-alpha, IFN-gamma, and inducible nitric oxide synthase was significantly reduced and that of anti-inflammatory IL-10 and bFGF, TGF-alpha, and Bcl-2 was highly upregulated in treated kidneys. We conclude that the early, highly significant renoprotection obtained with MSC is of considerable therapeutic promise for the cell-based management of clinical ARF. The beneficial effects of MSC are primarily mediated via complex paracrine actions and not by their differentiation into target cells, which, as such, appears to be a more protracted response that may become important in late-stage organ repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of mesenchymal stromal cell immunomodulation.

            Multipotent mesenchymal stromal cells (MSCs) have generated considerable interest in the fields of regenerative medicine, cell therapy and immune modulation. Over the past 5 years, the initial observations that MSCs could enhance regeneration and modulate immune responses have been significantly advanced and we now have a clearer picture of the effects that MSCs have on the immune system particularly in the context of inflammatory-mediated disorders. A number of mechanisms of action have been reported in MSC immunomodulation, which encompass the secretion of soluble factors, induction of anergy, apoptosis, regulatory T cells and tolerogenic dendritic cells. It is clear that MSCs modulate both innate and adaptive responses and evidence is now emerging that the local microenvironment is key in the activation or licensing of MSCs to become immunosuppressive. More recently, studies have suggested that MSCs have the capacity to sense their environment and have a role in pathogen clearance in conjunction with the resolution of insult or injury. This review focuses on the mechanisms of MSC immunomodulation discussing the multistep process of MSC localisation at sites of inflammation, the cross talk between MSCs and the local microenvironment as well as the subsequent mechanisms of action used to resolve inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunomodulation by mesenchymal stem cells and clinical experience.

              Mesenchymal stem cells (MSCs) from adult marrow can differentiate in vitro and in vivo into various cell types, such as bone, fat and cartilage. MSCs preferentially home to damaged tissue and may have therapeutic potential. In vitro data suggest that MSCs have low inherent immunogenicity as they induce little, if any, proliferation of allogeneic lymphocytes. Instead, MSCs appear to be immunosuppressive in vitro. They inhibit T-cell proliferation to alloantigens and mitogens and prevent the development of cytotoxic T-cells. In vivo, MSCs prolong skin allograft survival and have several immunomodulatory effects, which are presented and discussed in the present study. Possible clinical applications include therapy-resistant severe acute graft-versus-host disease, tissue repair, treatment of rejection of organ allografts and autoimmune disorders.
                Bookmark

                Author and article information

                Contributors
                mgregorini@hotmail.com
                bosiofrancesca@gmail.com
                chiarettaleo@hotmail.it
                valeria.corradetti@gmail.com
                t.valsania@hotmail.com
                ef.pattonieri@gmail.com
                pasqualeesposito@hotmail.com
                giuliabedino@yahoo.it
                chiara.collesi@icgeb.org
                carmelo.libetta@unipv.it
                francescofrassoni@hsanmartino.it
                dalcanton@smatteo.pv.it
                t.rampino@smatteo.pv.it
                Journal
                BMC Immunol
                BMC Immunol
                BMC Immunology
                BioMed Central (London )
                1471-2172
                3 October 2014
                3 October 2014
                2014
                : 15
                : 1
                : 44
                Affiliations
                [ ]Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
                [ ]Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo, viale Golgi 19, 27100 Pavia, Italy
                [ ]ICGEB, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
                [ ]Stem Cells Therapy and Hemato-Oncology, S.Martino Hospital, 16100 Genoa, Italy
                Article
                44
                10.1186/s12865-014-0044-1
                4193986
                25277788
                91119c0c-e6db-4b3c-ba53-93950cd8430b
                © Gregorini et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 7 February 2014
                : 25 September 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Immunology
                mesenchymal stromal cells,acute kidney rejection,experimental model,hepatocyte growth factor,macrophage stimulating protein,scatter factors

                Comments

                Comment on this article