34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic defects in a number of components of the dystrophin–glycoprotein complex (DGC) lead to distinct forms of muscular dystrophy. However, little is known about how alterations in the DGC are manifested in the pathophysiology present in dystrophic muscle tissue. One hypothesis is that the DGC protects the sarcolemma from contraction-induced damage. Using tracer molecules, we compared sarcolemmal integrity in animal models for muscular dystrophy and in muscular dystrophy patient samples. Evans blue, a low molecular weight diazo dye, does not cross into skeletal muscle fibers in normal mice. In contrast, mdx mice, a dystrophin-deficient animal model for Duchenne muscular dystrophy, showed significant Evans blue accumulation in skeletal muscle fibers. We also studied Evans blue dispersion in transgenic mice bearing different dystrophin mutations, and we demonstrated that cytoskeletal and sarcolemmal attachment of dystrophin might be a necessary requirement to prevent serious fiber damage. The extent of dye incorporation in transgenic mice correlated with the phenotypic severity of similar dystrophin mutations in humans. We furthermore assessed Evans blue incorporation in skeletal muscle of the dystrophia muscularis ( dy/ dy) mouse and its milder allelic variant, the dy 2J / dy 2J mouse, animal models for congenital muscular dystrophy. Surprisingly, these mice, which have defects in the laminin α2-chain, an extracellular ligand of the DGC, showed little Evans blue accumulation in their skeletal muscles. Taken together, these results suggest that the pathogenic mechanisms in congenital muscular dystrophy are different from those in Duchenne muscular dystrophy, although the primary defects originate in two components associated with the same protein complex.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Dystrophin protects the sarcolemma from stresses developed during muscle contraction.

          The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficient muscle fibers of the mdx mouse exhibit an increased susceptibility to contraction-induced sarcolemmal rupture. The level of sarcolemmal damage is directly correlated with the magnitude of mechanical stress placed upon the membrane during contraction rather than the number of activations of the muscle. These findings strongly support the proposition that the primary function of dystrophin is to provide mechanical reinforcement to the sarcolemma and thereby protect it from the membrane stresses developed during muscle contraction. Furthermore, the methodology used in this study should prove useful in assessing the efficacy of dystrophin gene therapy in the mdx mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice

            Dystrophin, the protein product of the human Duchenne muscular dystrophy gene, exists in skeletal muscle as a large oligomeric complex that contains four glycoproteins of 156, 50, 43, and 35 kD and a protein of 59 kD. Here, we investigated the relative abundance of each of the components of the dystrophin-glycoprotein complex in skeletal muscle from normal and mdx mice, which are missing dystrophin. Immunoblot analysis using total muscle membranes from control and mdx mice of ages 1 d to 30 wk found that all of the dystrophin-associated proteins were greatly reduced (80-90%) in mdx mouse skeletal muscle. The specificity of the loss of the dystrophin-associated glycoproteins was demonstrated by the finding that the major glycoprotein composition of skeletal muscle membranes from normal and mdx mice was identical. Furthermore, skeletal muscle membranes from the dystrophic dy/dy mouse exhibited a normal density of dystrophin and dystrophin-associated proteins. Immunofluorescence microscopy confirmed the results from the immunoblot analysis and showed a drastically reduced density of dystrophin-associated proteins in mdx muscle cryosections compared with normal and dy/dy mouse muscle. Therefore, our results demonstrate that all of the dystrophin-associated proteins are significantly reduced in mdx skeletal muscle and suggest that the loss of dystrophin-associated proteins is due to the absence of dystrophin and not due to secondary effects of muscle fiber degradation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene.

              The classic murine muscular dystrophy strain, dy, was first described almost 40 years ago. We have identified the molecular basis of an allele of dy, called dy2J, by detecting a mutation in the laminin alpha 2 chain gene--the first identified mutation in laminin-2. The G to A mutation in a splice site consensus sequence causes abnormal splicing and expression of multiple mRNAs. One mRNA is translated into an alpha 2 polypeptide with a deletion in domain VI. The truncated protein apparently lacks important qualities of the wild type protein and is unable to provide sufficient muscle stability.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                20 October 1997
                : 139
                : 2
                : 375-385
                Affiliations
                Department of [* ]Physiology and Biophysics and []Department of Neurology, Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, Iowa 52242; and [§ ]Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109
                Article
                10.1083/jcb.139.2.375
                2139791
                9334342
                911ad7e6-ec8c-43aa-b486-c6370e048d23
                Copyright @ 1997
                History
                : 4 June 1997
                : 30 July 1997
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article