90
views
0
recommends
+1 Recommend
0 collections
    7
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment

      review-article
      1 , , 1
      Cell Communication and Signaling : CCS
      BioMed Central
      Mesenchymal stem cells, Tumor cells, Microenvironment

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stem cells (MSC) represent a heterogeneous population exhibiting stem cell-like properties which are distributed almost ubiquitously among perivascular niches of various human tissues and organs. Organismal requirements such as tissue damage determine interdisciplinary functions of resident MSC including self-renewal, migration and differentiation, whereby MSC support local tissue repair, angiogenesis and concomitant immunomodulation. However, growth of tumor cells and invasion also causes local tissue damage and injury which subsequently activates repair mechanisms and consequently, attracts MSC. Thereby, MSC exhibit a tissue-specific functional biodiversity which is mediated by direct cell-to-cell communication via adhesion molecule signaling and by a tightly regulated exchange of a multifactorial panel of cytokines, exosomes, and micro RNAs. Such interactions determine either tumor-promoting or tumor-inhibitory support by MSC. Moreover, fusion with necrotic/apoptotic tumor cell bodies contributes to re-program MSC into an aberrant phenotype also suggesting that tumor tissue in general represents different types of neoplastic cell populations including tumor-associated stem cell-like cells. The present work summarizes some functional characteristics and biodiversity of MSC and highlights certain controversial interactions with normal and tumorigenic cell populations, including associated modulations within the MSC microenvironment.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.

          Adult bone-marrow-derived mesenchymal stem cells are immunosuppressive and prolong the rejection of mismatched skin grafts in animals. We transplanted haploidentical mesenchymal stem cells in a patient with severe treatment-resistant grade IV acute graft-versus-host disease of the gut and liver. Clinical response was striking. The patient is now well after 1 year. We postulate that mesenchymal stem cells have a potent immunosuppressive effect in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views.

            Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well described. A large number of reports have also indicated that the cells possess the capacity to transdifferentiate into epithelial cells and lineages derived from the neuroectoderm. The broad developmental plasticity of MSCs was originally thought to contribute to their demonstrated efficacy in a wide variety of experimental animal models of disease as well as in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for transdifferentiation in tissue repair. Herein, we critically evaluate the literature describing the plasticity of MSCs and offer insight into how the molecular and functional heterogeneity of this cell population, which reflects the complexity of marrow stroma as an organ system, may confound interpretation of their transdifferentiation potential. Additionally, we argue that this heterogeneity also provides a basis for the broad therapeutic efficacy of MSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.

              The Wharton's jelly of the umbilical cord contains mucoid connective tissue and fibroblast-like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5-azacytidine or by culturing them in cardiomyocyte-conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N-cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.
                Bookmark

                Author and article information

                Journal
                Cell Commun Signal
                Cell Commun. Signal
                Cell Communication and Signaling : CCS
                BioMed Central
                1478-811X
                2012
                3 September 2012
                : 10
                : 26
                Affiliations
                [1 ]Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology (OE 6410), Medical University Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
                Article
                1478-811X-10-26
                10.1186/1478-811X-10-26
                3444900
                22943670
                9120a63b-d098-4372-bbd7-118713757cc7
                Copyright ©2012 Hass and Otte; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 July 2012
                : 28 August 2012
                Categories
                Review

                Cell biology
                mesenchymal stem cells,tumor cells,microenvironment
                Cell biology
                mesenchymal stem cells, tumor cells, microenvironment

                Comments

                Comment on this article