21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An early and accurate in vivo diagnosis of rapidly progressive dementia remains challenging, despite its critical importance for the outcome of treatable forms, and the formulation of prognosis. Real-Time Quaking-Induced Conversion (RT-QuIC) is an in vitro assay that, for the first time, specifically discriminates patients with prion disease. Here, using cerebrospinal fluid (CSF) samples from 239 patients with definite or probable prion disease and 100 patients with a definite alternative diagnosis, we compared the performance of the first (PQ-CSF) and second generation (IQ-CSF) RT-QuIC assays, and investigated the diagnostic value of IQ-CSF across the broad spectrum of human prions. Our results confirm the high sensitivity of IQ-CSF for detecting human prions with a sub-optimal sensitivity for the sporadic CJD subtypes MM2C and MM2T, and a low sensitivity limited to variant CJD, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. While we found no difference in specificity between PQ-CSF and IQ-CSF, the latter showed a significant improvement in sensitivity, allowing prion detection in about 80% of PQ-CSF negative CJD samples. Our results strongly support the implementation of IQ-CSF in clinical practice. By rapidly confirming or excluding CJD with high accuracy the assay is expected to improve the outcome for patients and their enrollment in therapeutic trials.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Sporadic human prion diseases: molecular insights and diagnosis.

          Human prion diseases can be sporadic, inherited, or acquired by infection. Distinct clinical and pathological characteristics separate sporadic diseases into three phenotypes: Creutzfeldt-Jakob disease (CJD), fatal insomnia, and variably protease-sensitive prionopathy. CJD accounts for more than 90% of all cases of sporadic prion disease; it is commonly categorised into five subtypes that can be distinguished according to leading clinical signs, histological lesions, and molecular traits of the pathogenic prion protein. Three subtypes affect prominently cognitive functions whereas the other two impair cerebellar motor activities. An accurate and timely diagnosis depends on careful clinical examination and early performance and interpretation of diagnostic tests, including electroencephalography, quantitative assessment of the surrogate markers 14-3-3, tau, and of the prion protein in the CSF, and neuroimaging. The reliability of CSF tests is improved when these tests are interpreted alongside neuroimaging data. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein.

            The scrapie prion protein isoform, PrPSc, is a prion-associated marker that seeds the conformational conversion and polymerization of normal protease-sensitive prion protein (PrP-sen). This seeding activity allows ultrasensitive detection of PrPSc using cyclical sonicated amplification (PMCA) reactions and brain homogenate as a source of PrP-sen. Here we describe a much faster seeded polymerization method (rPrP-PMCA) which detects >or=50 ag of hamster PrPSc (approximately 0.003 lethal dose) within 2-3 d. This technique uses recombinant hamster PrP-sen, which, unlike brain-derived PrP-sen, can be easily concentrated, mutated and synthetically tagged. We generated protease-resistant recombinant PrP fibrils that differed from spontaneously initiated fibrils in their proteolytic susceptibility and by their infrared spectra. This assay could discriminate between scrapie-infected and uninfected hamsters using 2-microl aliquots of cerebral spinal fluid. This method should facilitate the development of rapid, ultrasensitive prion assays and diagnostic tests, in addition to aiding fundamental studies of structure and mechanism of PrPSc formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diagnostic and prognostic value of human prion detection in cerebrospinal fluid

              Objective Several prion amplification systems have been proposed for detection of prions in cerebrospinal fluid (CSF), most recently, the measurements of prion seeding activity with second-generation real-time quaking-induced conversion (RT-QuIC). The objective of this study was to investigate the diagnostic performance of the RT-QuIC prion test in the broad phenotypic spectrum of prion diseases. Methods We performed CSF RT-QuIC testing in 2,141 patients who had rapidly progressive neurological disorders, determined diagnostic sensitivity and specificity in 272 cases which were autopsied, and evaluated the impact of mutations and polymorphisms in the PRNP gene, and Type 1 or Type 2 of human prions on diagnostic performance. Results The 98.5% diagnostic specificity and 92% sensitivity of CSF RT-QuIC in a blinded retrospective analysis matched the 100% specificity and 95% sensitivity of a blind prospective study. The CSF RT-QuIC differentiated 94% of cases of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 from the sCJD MM2 phenotype, and 80% of sCJD VV2 from sCJD VV1. The mixed prion type 1–2 and cases heterozygous for codon 129 generated intermediate CSF RT-QuIC patterns, while genetic prion diseases revealed distinct profiles for each PRNP gene mutation. Interpretation The diagnostic performance of the improved CSF RT-QuIC is superior to surrogate marker tests for prion diseases such as 14-3-3 and Tau proteins and together with PRNP gene sequencing, the test allows the major prion subtypes to be differentiated in vivo. This differentiation facilitates prediction of the clinicopathological phenotype and duration of the disease—two important considerations for envisioned therapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                piero.parchi@unibo.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 September 2017
                6 September 2017
                2017
                : 7
                : 10655
                Affiliations
                [1 ]ISNI 0000 0004 1757 1758, GRID grid.6292.f, Department of Biomedical and Neuromotor Sciences, , University of Bologna, ; Bologna, Italy
                [2 ]ISNI 0000 0001 2164 9667, GRID grid.419681.3, LPVD, Rocky Mountain Laboratories, NIAID, NIH, ; Hamilton, MT USA
                [3 ]ISNI 0000 0004 1936 7988, GRID grid.4305.2, National CJD Research and Surveillance Unit, University of Edinburgh, ; Edinburgh, Scotland UK
                [4 ]ISNI 0000 0001 0707 5492, GRID grid.417894.7, IRCCS Foundation Carlo Besta Neurological Institute, ; Milan, Italy
                [5 ]ISNI 0000 0004 1757 6786, GRID grid.429254.c, IRCCS, Institute of Neurological Sciences, ; Bologna, Italy
                Author information
                http://orcid.org/0000-0002-9444-9524
                Article
                10922
                10.1038/s41598-017-10922-w
                5587608
                28878311
                912199ee-5098-4156-8f8f-46fa60a88de7
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 May 2017
                : 16 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article