6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.

          Author summary

          Mistakes that occur during meiotic chromosome segregation can lead to fetal death or various disorders in offspring, hence proper chromosome segregation is crucial. To ensure optimal execution of this process, crossing over must occur between homologous chromosomes. Crossovers form only in the presence of a large proteinaceous structure called the synaptonemal complex (SC), which forms between homologs during early meiosis. How SC components assemble in a controlled manner into a normal ribbon-like structure between homologs is poorly understood. In female fruit flies, mutations in seven in absentia ( sina) cause SC components to self-assemble into large structures called polycomplexes, rather than into normal SC. Sina is a member of a family of E3 ubiquitin ligases, which are present in a number of organisms and target other proteins for degradation. We propose that there are proteins that promote the assembly of SC components into polycomplexes, and that Sina is required to degrade such proteins, allowing the normal assembly of SC components between homologous chromosomes.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of zygotic gene expression in Drosophila primordial germ cells.

          Activation of the zygotic genome is a prerequisite for the transition from maternal to zygotic control of development. The onset of zygotic transcription has been well studied in somatic cells, but evidence suggests that it is controlled differently in the germline. In Drosophila, zygotic transcription in the soma has been detected as early as one hour after egg laying (AEL) [1]. In the germline, general RNA synthesis is not detected until 3.5 hours AEL (stage 8) [2] and poly(A)-containing transcripts are not observed in early germ cell nuclei [3]. However, rRNA gene expression has been demonstrated at this time [4]. Therefore, either there is a general, low level activation of the genome in early germ cells, or specific classes of genes, such as those transcribed by RNA polymerase (RNAP) II, are repressed. We addressed this issue by localizing the potent transcriptional activator Gal4-VP16 to the germline, and we find that Gal4-VP16-dependent gene expression is repressed in early germ cells. In addition, localization of germ plasm to the anterior reveals that it is sufficient to repress Bicoid-dependent gene expression. Thus, even in the presence of known transcriptional activators, RNAP II dependent gene expression is actively repressed in early germ cells. Furthermore, once the germ cell genome is activated, we find that vasa is expressed specifically in germ cells. This expression does not require proper patterning of the soma, indicating that it is likely to be controlled by the germ plasm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            c(3)G encodes a Drosophila synaptonemal complex protein.

            The meiotic mutant c(3)G (crossover suppressor on 3 of Gowen) abolishes both synaptonemal complex (SC) formation and meiotic recombination, whereas mutations in the mei-W68 and mei-P22 genes prevent recombination but allow normal SC to form. These data, as well as a century of cytogenetic studies, support the argument that meiotic recombination between homologous chromosomes in Drosophila females requires synapsis and SC formation. We have cloned the c(3)G gene and shown that it encodes a protein that is structurally similar to SC proteins from yeast and mammals. Immunolocalization of the C(3)G protein, as well as the analysis of a C(3)G-eGFP expression construct, reveals that C(3)G is present in a thread-like pattern along the lengths of chromosomes in meiotic prophase, consistent with a role as an SC protein present on meiotic bivalents. The availability of a marker for SC in Drosophila allowed the investigation of the extent of synapsis in exchange-defective mutants. These studies indicate that SC formation is impaired in certain meiotic mutants and that the synaptic defect correlates with the exchange defects. Moreover, the observation of interference among the residual exchanges in these mutant oocytes implies that complete SC formation is not required for crossover interference in Drosophila.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis.

              Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: Writing – original draftRole: Writing – review & editing
                Role: Investigation
                Role: Investigation
                Role: Investigation
                Role: Investigation
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                20 May 2019
                May 2019
                : 15
                : 5
                : e1008161
                Affiliations
                [1 ] Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
                [2 ] Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
                The University of North Carolina at Chapel Hill, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                [¤]

                Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

                Author information
                http://orcid.org/0000-0002-0992-1231
                http://orcid.org/0000-0002-6478-0494
                Article
                PGENETICS-D-19-00187
                10.1371/journal.pgen.1008161
                6544331
                31107865
                91286b56-389d-4abd-8609-45d231fcbf26
                © 2019 Hughes et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 February 2019
                : 26 April 2019
                Page count
                Figures: 10, Tables: 5, Pages: 35
                Funding
                RSH is supported by the Stowers Institute for Medical Research and is an American Cancer SocietyResearch Professor. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Chromosome Biology
                Chromosomes
                Chromosome Structure and Function
                Centromeres
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Germ Cells
                OVA
                Oocytes
                Biology and Life Sciences
                Anatomy
                Reproductive System
                Ovaries
                Medicine and Health Sciences
                Anatomy
                Reproductive System
                Ovaries
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Drosophila Melanogaster
                Research and Analysis Methods
                Model Organisms
                Drosophila Melanogaster
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Animal Models
                Drosophila Melanogaster
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Drosophila
                Drosophila Melanogaster
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Flower Anatomy
                Corolla
                Biology and Life Sciences
                Cell Biology
                Chromosome Biology
                Chromosomes
                Sex Chromosomes
                X Chromosomes
                Biology and Life Sciences
                Cell Biology
                Chromosome Biology
                Chromosomes
                Homologous Chromosomes
                Biology and Life Sciences
                Molecular Biology
                Macromolecular Structure Analysis
                Protein Structure
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Custom metadata
                vor-update-to-uncorrected-proof
                2019-05-31
                Original data underlying this manuscript can be accessed from the Stowers Original Data Repository at http://www.stowers.org/research/publications/libpb-1378.

                Genetics
                Genetics

                Comments

                Comment on this article