24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitofusin-mediated ER stress triggers neurodegeneration in pink1/ parkin models of Parkinson's disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in PINK1 and PARKIN cause early-onset Parkinson's disease (PD), thought to be due to mitochondrial toxicity. Here, we show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective, through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract for this article is available online in the supplementary information

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Mitofusin 2 tethers endoplasmic reticulum to mitochondria.

          Juxtaposition between endoplasmic reticulum (ER) and mitochondria is a common structural feature, providing the physical basis for intercommunication during Ca(2+) signalling; yet, the molecular mechanisms controlling this interaction are unknown. Here we show that mitofusin 2, a mitochondrial dynamin-related protein mutated in the inherited motor neuropathy Charcot-Marie-Tooth type IIa, is enriched at the ER-mitochondria interface. Ablation or silencing of mitofusin 2 in mouse embryonic fibroblasts and HeLa cells disrupts ER morphology and loosens ER-mitochondria interactions, thereby reducing the efficiency of mitochondrial Ca(2+) uptake in response to stimuli that generate inositol-1,4,5-trisphosphate. An in vitro assay as well as genetic and biochemical evidences support a model in which mitofusin 2 on the ER bridges the two organelles by engaging in homotypic and heterotypic complexes with mitofusin 1 or 2 on the surface of mitochondria. Thus, mitofusin 2 tethers ER to mitochondria, a juxtaposition required for efficient mitochondrial Ca(2+) uptake.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PINK1/Parkin pathway regulates mitochondrial morphology.

            Loss-of-function mutations in the PTEN-induced kinase 1 (PINK1) or parkin genes, which encode a mitochondrially localized serine/threonine kinase and a ubiquitin-protein ligase, respectively, result in recessive familial forms of Parkinsonism. Genetic studies in Drosophila indicate that PINK1 acts upstream of Parkin in a common pathway that influences mitochondrial integrity in a subset of tissues, including flight muscle and dopaminergic neurons. The mechanism by which PINK1 and Parkin influence mitochondrial integrity is currently unknown, although mutations in the PINK1 and parkin genes result in enlarged or swollen mitochondria, suggesting a possible regulatory role for the PINK1/Parkin pathway in mitochondrial morphology. To address this hypothesis, we examined the influence of genetic alterations affecting the machinery that governs mitochondrial morphology on the PINK1 and parkin mutant phenotypes. We report that heterozygous loss-of-function mutations of drp1, which encodes a key mitochondrial fission-promoting component, are largely lethal in a PINK1 or parkin mutant background. Conversely, the flight muscle degeneration and mitochondrial morphological alterations that result from mutations in PINK1 and parkin are strongly suppressed by increased drp1 gene dosage and by heterozygous loss-of-function mutations affecting the mitochondrial fusion-promoting factors OPA1 and Mfn2. Finally, we find that an eye phenotype associated with increased PINK1/Parkin pathway activity is suppressed by perturbations that reduce mitochondrial fission and enhanced by perturbations that reduce mitochondrial fusion. Our studies suggest that the PINK1/Parkin pathway promotes mitochondrial fission and that the loss of mitochondrial and tissue integrity in PINK1 and parkin mutants derives from reduced mitochondrial fission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sustained translational repression by eIF2α-P mediates prion neurodegeneration.

              The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                June 2016
                23 June 2016
                1 June 2016
                : 7
                : 6
                : e2271
                Affiliations
                [1 ]MRC Toxicology Unit , Lancaster Road, Leicester LE1 9HN, UK
                [2 ]Department of Molecular Neuroscience, Institute of Neurology, University College London , London WC1N 3BG, UK
                [3 ]Department of Clinical Neurosciences, University of Cambridge , Clifford Allbutt Building, Cambridge Biomedical Campus, Cambridge CB1 0HN, UK
                Author notes
                [* ]Department of Clinical Neurosciences, University of Cambridge , Clifford Allbutt Building, Cambridge Biomedical Campus, Cambridge CB1 0HN, UK. Tel: +44 (0)1223 762043; Fax: +44 (0)116 252 5616; E-mail: gm522@ 123456cam.ac.uk
                [* ]Cell Death Regulation Laboratory, MRC Toxicology Unit, Hodgkin Building , Lancaster Road, Leicester LE1 9HN, UK. Tel: +44 (0)116 223 1501; Fax: +44 (0)116 252 5616; E-mail: shyl1@ 123456le.ac.uk
                [* ]Cell Death Regulation Laboratory, MRC Toxicology Unit, Hodgkin Building , Lancaster Road, Leicester LE1 9HN, UK. Tel: +44 (0)116 252 5533 or Fax: +44 (0)116 252 5616; E-mail: martins.lmiguel@ 123456gmail.com
                [4]

                These authors contributed equally to this work.

                Article
                cddis2016173
                10.1038/cddis.2016.173
                5143399
                27336715
                91295500-2435-4ad6-87ef-e32c170eba84
                Copyright © 2016 Macmillan Publishers Limited

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 April 2016
                : 18 May 2016
                : 26 May 2016
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article