10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Airway Management and Related Procedures in Critically Ill COVID-19 Patients: Position Statement of the Indian Society of Critical Care Medicine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          A bstract

          The coronavirus disease (COVID-19) pandemic has affected nearly all nations globally. The highly contagious nature of the disease puts the healthcare workers at high risk of acquiring infection, especially while handling airway and performing aerosol-generating procedures. The Indian Society of Critical Care Medicine, through this position paper, aims to provide guidance for safe airway management to all healthcare workers dealing with airway in COVID-19 patients.

          How to cite this article

          Praveen Kumar G, Kulkarni AP, Govil D, Dixit SB, Chaudhry D, Samavedam S, et al. Airway Management and Related Procedures in Critically Ill COVID-19 Patients: Position Statement of the Indian Society of Critical Care Medicine. Indian J Crit Care Med 2020;24(8):630–642.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found

          Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

            To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China].

              (2020)
              Objective: An outbreak of 2019 novel coronavirus diseases (COVID-19) in Wuhan, China has spread quickly nationwide. Here, we report results of a descriptive, exploratory analysis of all cases diagnosed as of February 11, 2020. Methods: All COVID-19 cases reported through February 11, 2020 were extracted from China's Infectious Disease Information System. Analyses included: 1) summary of patient characteristics; 2) examination of age distributions and sex ratios; 3) calculation of case fatality and mortality rates; 4) geo-temporal analysis of viral spread; 5) epidemiological curve construction; and 6) subgroup analysis. Results: A total of 72 314 patient records-44 672 (61.8%) confirmed cases, 16 186 (22.4%) suspected cases, 10567 (14.6%) clinical diagnosed cases (Hubei only), and 889 asymptomatic cases (1.2%)-contributed data for the analysis. Among confirmed cases, most were aged 30-79 years (86.6%), diagnosed in Hubei (74.7%), and considered mild (80.9%). A total of 1 023 deaths occurred among confirmed cases for an overall case-fatality rate of 2.3%. The COVID-19 spread outward from Hubei sometime after December 2019 and by February 11, 2020, 1 386 counties across all 31 provinces were affected. The epidemic curve of onset of symptoms peaked in January 23-26, then began to decline leading up to February 11. A total of 1 716 health workers have become infected and 5 have died (0.3%). Conclusions: The COVID-19 epidemic has spread very quickly. It only took 30 days to expand from Hubei to the rest of Mainland China. With many people returning from a long holiday, China needs to prepare for the possible rebound of the epidemic.
                Bookmark

                Author and article information

                Journal
                Indian J Crit Care Med
                Indian J Crit Care Med
                IJCCM
                Indian Journal of Critical Care Medicine : Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine
                Jaypee Brothers Medical Publishers
                0972-5229
                1998-359X
                August 2020
                : 24
                : 8
                : 630-642
                Affiliations
                [1,3 ]Institute of Critical Care and Anesthesia, Medanta–the Medicity, Gurugram, Haryana, India
                [2 ]Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
                [4 ]Department of Critical Care, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
                [5 ]Department of Pulmonary and Critical Care Medicine, University of Health Sciences, Rohtak, Haryana, India
                [6 ]Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
                [7 ]Department of Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
                [8 ]Division of Critical Care, CARE Hospitals, Hyderabad, Telangana, India
                [9 ]Institute of Critical Care, Calcutta Medical Research Institute, Kolkata, West Bengal, India
                Author notes
                Praveen Kumar G, Institute of Critical Care and Anesthesia, Medanta–the Medicity, Gurugram, Haryana, India, Phone: +91 9637931712, e-mail: drpk1987@ 123456gmail.com
                Article
                10.5005/jp-journals-10071-23471
                7519615
                33024367
                913f870a-2b72-474f-82ae-2fcc97a22703
                Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.

                © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Categories
                Guidelines

                Emergency medicine & Trauma
                aerosol,airway,covid-19,droplets,extubation,intubation,nebulization,tracheostomy,videolaryngoscopy

                Comments

                Comment on this article