26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep learning has become a widely used powerful tool in many research fields, although not much so yet in agriculture technologies. In this work, two deep convolutional neural networks (CNN), viz. Residual Network (ResNet) and its improved version named ResNeXt, are used to detect internal mechanical damage of blueberries using hyperspectral transmittance data. The original structure and size of hypercubes are adapted for the deep CNN training. To ensure that the models are applicable to hypercube, we adjust the number of filters in the convolutional layers. Moreover, a total of 5 traditional machine learning algorithms, viz. Sequential Minimal Optimization (SMO), Linear Regression (LR), Random Forest (RF), Bagging and Multilayer Perceptron (MLP), are performed as the comparison experiments. In terms of model assessment, k-fold cross validation is used to indicate that the model performance does not vary with the different combination of dataset. In real-world application, selling damaged berries will lead to greater interest loss than discarding the sound ones. Thus, precision, recall, and F1-score are also used as the evaluation indicators alongside accuracy to quantify the false positive rate. The first three indicators are seldom used by investigators in the agricultural engineering domain. Furthermore, ROC curves and Precision-Recall curves are plotted to visualize the performance of classifiers. The fine-tuned ResNet/ResNeXt achieve average accuracy and F1-score of 0.8844/0.8784 and 0.8952/0.8905, respectively. Classifiers SMO/ LR/RF/Bagging/MLP obtain average accuracy and F1-score of 0.8082/0.7606/0.7314/0.7113/0.7827 and 0.8268/0.7796/0.7529/0.7339/0.7971, respectively. Two deep learning models achieve better classification performance than the traditional machine learning methods. Classification for each testing sample only takes 5.2 ms and 6.5 ms respectively for ResNet and ResNeXt, indicating that the deep learning framework has great potential for online fruit sorting. The results of this study demonstrate the potential of deep CNN application on analyzing the internal mechanical damage of fruit.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences

            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DeepFruits: A Fruit Detection System Using Deep Neural Networks

            This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
              • Record: found
              • Abstract: not found
              • Article: not found

              Improvements to Platt's SMO Algorithm for SVM Classifier Design

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                07 April 2018
                April 2018
                : 18
                : 4
                : 1126
                Affiliations
                Institute of Image Communication and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China; wangzhaodi@ 123456sjtu.edu.cn
                Author notes
                Author information
                https://orcid.org/0000-0002-3550-3287
                Article
                sensors-18-01126
                10.3390/s18041126
                5948514
                29642454
                914148a1-5c90-481e-b806-6661ea122bf7
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 March 2018
                : 04 April 2018
                Categories
                Article

                Biomedical engineering
                convolutional neural networks,hyperspectral transmittance image,internal mechanical damage detection,fruit quality detection,machine learning

                Comments

                Comment on this article

                Related Documents Log