7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulation of transcriptional burst frequency by histone acetylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Single-cell approaches have shown that many mammalian genes are transcribed stochastically in bursts of specific sizes and frequencies; however, molecular mechanisms controlling these bursting parameters have remained largely undetermined. By studying transcriptional bursting of a luciferase reporter controlled by a circadian gene promoter, we found that the gene integration site mainly influenced the burst size, while the circadian time primarily modulated the burst frequency. These daily variations in burst frequency correlated with histone acetylation levels, and CRISPR-Cas9–mediated acetylation of the promoter was sufficient to change the burst frequency. Since this correlation was also observed in other genes and in several cell types, we conclude that the impact of histone acetylation on gene expression is achieved mainly through modulation of burst frequency.

          Abstract

          Many mammalian genes are transcribed during short bursts of variable frequencies and sizes that substantially contribute to cell-to-cell variability. However, which molecular mechanisms determine bursting properties remains unclear. To probe putative mechanisms, we combined temporal analysis of transcription along the circadian cycle with multiple genomic reporter integrations, using both short-lived luciferase live microscopy and single-molecule RNA-FISH. Using the Bmal1 circadian promoter as our model, we observed that rhythmic transcription resulted predominantly from variations in burst frequency, while the genomic position changed the burst size. Thus, burst frequency and size independently modulated Bmal1 transcription. We then found that promoter histone-acetylation level covaried with burst frequency, being greatest at peak expression and lowest at trough expression, while remaining unaffected by the genomic location. In addition, specific deletions of ROR-responsive elements led to constitutively elevated histone acetylation and burst frequency. We then investigated the suggested link between histone acetylation and burst frequency by dCas9p300-targeted modulation of histone acetylation, revealing that acetylation levels influence burst frequency more than burst size. The correlation between acetylation levels at the promoter and burst frequency was also observed in endogenous circadian genes and in embryonic stem cell fate genes. Thus, our data suggest that histone acetylation-mediated control of transcription burst frequency is a common mechanism to control mammalian gene expression.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Nature, nurture, or chance: stochastic gene expression and its consequences.

          Gene expression is a fundamentally stochastic process, with randomness in transcription and translation leading to cell-to-cell variations in mRNA and protein levels. This variation appears in organisms ranging from microbes to metazoans, and its characteristics depend both on the biophysical parameters governing gene expression and on gene network structure. Stochastic gene expression has important consequences for cellular function, being beneficial in some contexts and harmful in others. These situations include the stress response, metabolism, development, the cell cycle, circadian rhythms, and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers

            Technologies that facilitate the targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we have generated a programmable acetyltransferase based on the CRISPR/Cas9 gene regulation system, consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. This fusion protein catalyzes acetylation of histone H3 lysine 27 at its target sites, corresponding with robust transcriptional activation of target genes from promoters, proximal enhancers, and distal enhancers. Gene activation by the targeted acetyltransferase is highly specific across the genome. In contrast to conventional dCas9-based activators, the acetyltransferase effectively activates genes from enhancer regions and with individual guide RNAs. The core p300 domain is also portable to other programmable DNA-binding proteins. These results support targeted acetylation as a causal mechanism of transactivation and provide a new robust tool for manipulating gene regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.

              Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                3 July 2018
                18 June 2018
                18 June 2018
                : 115
                : 27
                : 7153-7158
                Affiliations
                [1] aInstitute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne , Lausanne CH-1015, Switzerland
                Author notes
                1To whom correspondence should be addressed. Email: felix.naef@ 123456epfl.ch .

                Edited by Joseph S. Takahashi, Howard Hughes Medical Institute and University of Texas Southwestern Medical Center, Dallas, TX, and approved May 21, 2018 (received for review December 22, 2017)

                Author contributions: D.N., D.M.S., and F.N. designed research; D.N. and B.Z. performed research; D.N. and B.Z. analyzed data; and D.N., B.Z., and F.N. wrote the paper.

                Article
                201722330
                10.1073/pnas.1722330115
                6142243
                29915087
                914b68cd-5e51-4abf-89ec-91882686755f
                Copyright © 2018 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 6
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF) 501100001711
                Award ID: 31-153340
                Award Recipient : Damien Nicolas Award Recipient : Benjamin Zoller Award Recipient : David M Suter Award Recipient : Felix Naef
                Funded by: SystemsX.ch
                Award ID: StoNets
                Award Recipient : Damien Nicolas Award Recipient : Benjamin Zoller Award Recipient : David M Suter Award Recipient : Felix Naef
                Categories
                Biological Sciences
                Systems Biology

                transcriptional bursting,stochastic gene expression,histone acetylation,circadian oscillator,bmal1

                Comments

                Comment on this article