31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression periods per 24 h recording episodes showed an early and a delayed peak on Day 7. Patients surviving subarachnoid haemorrhage with poor outcome at 6 months showed significantly higher total and peak numbers of spreading depolarizations and significantly longer total and peak depression periods during the electrocorticographic monitoring than patients with good outcome. In a semi-structured telephone interview 3 years after the initial haemorrhage, 44% of the subarachnoid haemorrhage survivors had developed late post-haemorrhagic seizures requiring anti-convulsant medication. In those patients, peak spreading depolarization number had been significantly higher [15.1 (11.4–30.8) versus 7.0 (0.8–11.2) events per day, P = 0.045]. In summary, monopolar recordings here provided unequivocal evidence of spreading convulsions in patients. Hence, practically all major pathological cortical network events in animals have now been observed in people. Early spreading depolarizations may indicate a risk for late post-haemorrhagic seizures.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease.

          The term spreading depolarization describes a wave in the gray matter of the central nervous system characterized by swelling of neurons, distortion of dendritic spines, a large change of the slow electrical potential and silencing of brain electrical activity (spreading depression). In the clinic, unequivocal electrophysiological evidence now exists that spreading depolarizations occur abundantly in individuals with aneurismal subarachnoid hemorrhage, delayed ischemic stroke after subarachnoid hemorrhage, malignant hemispheric stroke, spontaneous intracerebral hemorrhage or traumatic brain injury. Spreading depolarization is induced experimentally by various noxious conditions including chemicals such as potassium, glutamate, inhibitors of the sodium pump, status epilepticus, hypoxia, hypoglycemia and ischemia, but it can can also invade healthy, naive tissue. Resistance vessels respond to it with tone alterations, causing either transient hyperperfusion (physiological hemodynamic response) in healthy tissue or severe hypoperfusion (inverse hemodynamic response, or spreading ischemia) in tissue at risk for progressive damage, which contributes to lesion progression. Therapies that target spreading depolarization or the inverse hemodynamic response may potentially treat these neurological conditions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy.

            (1989)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of spreading depression and hypoxic spreading depression-like depolarization.

              G Somjen (2001)
              Spreading depression (SD) and the related hypoxic SD-like depolarization (HSD) are characterized by rapid and nearly complete depolarization of a sizable population of brain cells with massive redistribution of ions between intracellular and extracellular compartments, that evolves as a regenerative, "all-or-none" type process, and propagates slowly as a wave in brain tissue. This article reviews the characteristics of SD and HSD and the main hypotheses that have been proposed to explain them. Both SD and HSD are composites of concurrent processes. Antagonists of N-methyl-D-aspartate (NMDA) channels or voltage-gated Na(+) or certain types of Ca(2+) channels can postpone or mitigate SD or HSD, but it takes a combination of drugs blocking all known major inward currents to effectively prevent HSD. Recent computer simulation confirmed that SD can be produced by positive feedback achieved by increase of extracellular K(+) concentration that activates persistent inward currents which then activate K(+) channels and release more K(+). Any slowly inactivating voltage and/or K(+)-dependent inward current could generate SD-like depolarization, but ordinarily, it is brought about by the cooperative action of the persistent Na(+) current I(Na,P) plus NMDA receptor-controlled current. SD is ignited when the sum of persistent inward currents exceeds persistent outward currents so that total membrane current turns inward. The degree of depolarization is not determined by the number of channels available, but by the feedback that governs the SD process. Short bouts of SD and HSD are well tolerated, but prolonged depolarization results in lasting loss of neuron function. Irreversible damage can, however, be avoided if Ca(2+) influx into neurons is prevented.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                brain
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                January 2012
                25 November 2011
                25 November 2011
                : 135
                : 1
                : 259-275
                Affiliations
                1 Centre for Stroke Research Berlin, Charité University Medicine Berlin, 10117 Berlin, Germany
                2 Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany
                3 Department of Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany
                4 Epilepsy Centre Bethel, 33617 Bielefeld, Germany
                5 Department of Neurosurgery, Charité University Medicine Berlin, Berlin 10117, Germany
                6 Department of Neuroradiology, Charité University Medicine Berlin, 10117 Berlin, Germany
                7 Institute for Biostatistics and Clinical Epidemiology, Charité University Medicine Berlin, 10117 Berlin, Germany
                8 Department of Neurosurgery, University of Cincinnati, Cincinnati, 45219 OH, USA
                9 Department of Clinical Neurophysiology, University of Copenhagen, 2600 Glostrup Hospital, Denmark
                10 Institute of Physiology I, University of Münster, 48149 Münster, Germany
                11 Shefa Neuroscience Centre, Khatam Hospital, Rashid yasemi St., Valiasr Ave., Tehran, Iran
                Author notes
                Correspondence to: Jens P. Dreier, Centre for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany E-mail: jens.dreier@ 123456charite.de
                Article
                awr303
                10.1093/brain/awr303
                3267981
                22120143
                9151b0aa-4850-4248-bedc-3a39fa7b2664
                © The Author (2011). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 August 2011
                : 17 September 2011
                : 18 September 2011
                Page count
                Pages: 17
                Categories
                Original Articles

                Neurosciences
                subarachnoid haemorrhage,delayed cerebral ischaemia,spreading depolarization,spreading depression,epilepsy

                Comments

                Comment on this article