0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma and Urinary (Poly)phenolic Profiles after 4-Week Red Raspberry ( Rubus idaeus L.) Intake with or without Fructo-Oligosaccharide Supplementation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Red raspberries (RRB) are high in anthocyanin- and ellagitannin- type (poly)phenols. This study aimed to investigate the effect of 4-week RRB supplementation on (poly)phenolic metabolism in adults with prediabetes and insulin-resistance (PreDM-IR); and whether adding fructo-oligosaccharides (FOS), prebiotics, would augment the microbial metabolites of RRB (poly)phenols. In a randomized crossover clinical trial, subjects (n = 35: PreDM-IR, n = 25; healthy Reference group, n = 10) consumed 1 cup RRB (fresh weight equivalence) per day and RRB with 8 g FOS per day each for 4 weeks in random order separated by 4-week washout. Plasma and urinary (poly)phenolic metabolites were characterized after (0–24 h) consuming a RRB-based test drink (2 cups RRB) at baseline/week 0 and again after 4-week supplementations. A total of 123 (poly)phenolic metabolites were quantified. After 4-week RRB supplementation, several metabolite groups were significantly increased ( p < 0.05), including urolithins, phenyl-γ-valerolactones, and phenolic acids. Supplementing FOS with RRB for 4 weeks enhanced benzoic acid derivatives compared to the baseline ( p < 0.05). Specific effects of supplementation by metabolic status indicated 4-week RRB supplementation significantly increased microbial metabolites that were lower in PreDM-IR group. Our results suggest alterations in the capacity of PreDM-IR group to metabolize and render bioavailable raspberry-derived (poly)phenols when consumed regularly.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

          Summary Background Suboptimal diet is an important preventable risk factor for non-communicable diseases (NCDs); however, its impact on the burden of NCDs has not been systematically evaluated. This study aimed to evaluate the consumption of major foods and nutrients across 195 countries and to quantify the impact of their suboptimal intake on NCD mortality and morbidity. Methods By use of a comparative risk assessment approach, we estimated the proportion of disease-specific burden attributable to each dietary risk factor (also referred to as population attributable fraction) among adults aged 25 years or older. The main inputs to this analysis included the intake of each dietary factor, the effect size of the dietary factor on disease endpoint, and the level of intake associated with the lowest risk of mortality. Then, by use of disease-specific population attributable fractions, mortality, and disability-adjusted life-years (DALYs), we calculated the number of deaths and DALYs attributable to diet for each disease outcome. Findings In 2017, 11 million (95% uncertainty interval [UI] 10–12) deaths and 255 million (234–274) DALYs were attributable to dietary risk factors. High intake of sodium (3 million [1–5] deaths and 70 million [34–118] DALYs), low intake of whole grains (3 million [2–4] deaths and 82 million [59–109] DALYs), and low intake of fruits (2 million [1–4] deaths and 65 million [41–92] DALYs) were the leading dietary risk factors for deaths and DALYs globally and in many countries. Dietary data were from mixed sources and were not available for all countries, increasing the statistical uncertainty of our estimates. Interpretation This study provides a comprehensive picture of the potential impact of suboptimal diet on NCD mortality and morbidity, highlighting the need for improving diet across nations. Our findings will inform implementation of evidence-based dietary interventions and provide a platform for evaluation of their impact on human health annually. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fiber and Prebiotics: Mechanisms and Health Benefits

            The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known “prebiotics”, “a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health.” To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Aberrant intestinal microbiota in individuals with prediabetes

              Aims/hypothesis Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related microbial signatures. We tested whether specific gut microbiota profiles are associated with prediabetes (defined as fasting plasma glucose of 6.1–7.0 mmol/l or HbA1c of 42–48 mmol/mol [6.0–6.5%]) and a range of clinical biomarkers of poor metabolic health. Methods In the present case–control study, we analysed the gut microbiota of 134 Danish adults with prediabetes, overweight, insulin resistance, dyslipidaemia and low-grade inflammation and 134 age- and sex-matched individuals with normal glucose regulation. Results We found that five bacterial genera and 36 operational taxonomic units (OTUs) were differentially abundant between individuals with prediabetes and those with normal glucose regulation. At the genus level, the abundance of Clostridium was decreased (mean log2 fold change −0.64 (SEM 0.23), p adj  = 0.0497), whereas the abundances of Dorea, [Ruminococcus], Sutterella and Streptococcus were increased (mean log2 fold change 0.51 (SEM 0.12), p adj  = 5 × 10−4; 0.51 (SEM 0.11), p adj  = 1 × 10−4; 0.60 (SEM 0.21), p adj  = 0.0497; and 0.92 (SEM 0.21), p adj  = 4 × 10−4, respectively). The two OTUs that differed the most were a member of the order Clostridiales (OTU 146564) and Akkermansia muciniphila, which both displayed lower abundance among individuals with prediabetes (mean log2 fold change −1.74 (SEM 0.41), p adj  = 2 × 10−3 and −1.65 (SEM 0.34), p adj  = 4 × 10−4, respectively). Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to germfree Swiss Webster or conventional C57BL/6 J mice did not induce impaired glucose regulation in recipient mice. Conclusions/interpretation Collectively, our data show that individuals with prediabetes have aberrant intestinal microbiota characterised by a decreased abundance of the genus Clostridium and the mucin-degrading bacterium A. muciniphila. Our findings are comparable to observations in overt chronic diseases characterised by low-grade inflammation. Electronic supplementary material The online version of this article (10.1007/s00125-018-4550-1) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                17 October 2020
                October 2020
                : 25
                : 20
                : 4777
                Affiliations
                Department of Food Science and Nutrition and Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA; xzhan198@ 123456iit.edu (X.Z.); iedirisi@ 123456iit.edu (I.E.); bburton@ 123456iit.edu (B.M.B.-F.)
                Author notes
                [* ]Correspondence: asandhu2@ 123456iit.edu ; Tel.: +1-708-563-8823
                Author information
                https://orcid.org/0000-0001-8760-7080
                https://orcid.org/0000-0003-2627-4176
                Article
                molecules-25-04777
                10.3390/molecules25204777
                7594073
                33080934
                915662b4-493c-471c-af24-4df7a7b0e484
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 September 2020
                : 16 October 2020
                Categories
                Article

                red raspberry,fructo-oligosaccharide,prediabetes,urolithins,phenyl-γ-valerolactones,phenolic acids,uhplc-qqq

                Comments

                Comment on this article