6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Rapid suppression of the charge density wave in \({\mathrm{YBa}}_{2}{\mathrm{Cu}}_{3}{\mathrm{O}}_{6.6}\) under hydrostatic pressure

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O(6+x)

          There are increasing indications that superconductivity competes with other orders in cuprate superconductors, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of \(\bf \sim 3.2\) lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba\(_2\)Cu\(_3\)O\(_{6+x}\) with hole concentrations \(0.09 \leq p \leq 0.13\) per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature, \(T_c\); further cooling below \(T_c\) abruptly reverses the divergence of the charge correlations. In combination with prior observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge-density-wave instability that competes with superconductivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Conventional superconductivity at 203 K at high pressures

            A superconductor is a material that can conduct electricity with no resistance below its critical temperature (Tc). The highest Tc that has been achieved in cuprates1 is 133 K at ambient pressure2 and 164 K at high pressures3. As the nature of superconductivity in these materials has still not been explained, the prospects for a higher Tc are not clear. In contrast, the Bardeen-Cooper-Schrieffer (BCS) theory gives a guide for achieving high Tc and does not put bounds on Tc, all that is needed is a favorable combination of high frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen4,5. Numerous calculations support this idea and predict Tc of 50-235 K for many hydrides6 but only moderate Tc=17 K has been observed experimentally7. Here we studied sulfur hydride8 where a Tc~80 K was predicted9. We found that it transforms to a metal at pressure ~90 GPa. With cooling superconductivity was found deduced from a sharp drop of the resistivity to zero and a decrease of Tc with magnetic field. The pronounce isotope shift of Tc in D2S is evidence of an electron-phonon mechanism of superconductivity that is consistent with the BCS scenario. The superconductivity has been confirmed by magnetic susceptibility measurements with Tc=203K. The high Tc superconductivity most likely is due to H3S which is formed from H2S under its decomposition under pressure. Even higher Tc, room temperature superconductivity, can be expected in other hydrogen-based materials since hydrogen atoms provide the high frequency phonon modes as well as the strong electron-phonon coupling.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structural properties of oxygen-deficientYBa2Cu3O7−δ

                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                January 2018
                January 16 2018
                : 97
                : 2
                Article
                10.1103/PhysRevB.97.020503
                9165a647-9427-415e-b695-dca04cfccdc4
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article