186
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pigmentation Pathway Evolution after Whole-Genome Duplication in Fish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whole-genome duplications (WGDs) have occurred repeatedly in the vertebrate lineage, but their evolutionary significance for phenotypic evolution remains elusive. Here, we have investigated the impact of the fish-specific genome duplication (FSGD) on the evolution of pigmentation pathways in teleost fishes. Pigmentation and color patterning are among the most diverse traits in teleosts, and their pigmentary system is the most complex of all vertebrate groups.

          Using a comparative genomic approach including phylogenetic and synteny analyses, the evolution of 128 vertebrate pigmentation genes in five teleost genomes following the FSGD has been reconstructed. We show that pigmentation genes have been preferentially retained in duplicate after the FSGD, so that teleosts have 30% more pigmentation genes compared with tetrapods. This is significantly higher than genome-wide estimates of FSGD gene duplicate retention in teleosts. Large parts of the melanocyte regulatory network have been retained in two copies after the FSGD. Duplicated pigmentation genes follow general evolutionary patterns such as the preservation of protein complex stoichiometries and the overrepresentation of developmental genes among retained duplicates. These results suggest that the FSGD has made an important contribution to the evolution of teleost-specific features of pigmentation, which include novel pigment cell types or the division of existing pigment cell types into distinct subtypes. Furthermore, we have observed species-specific differences in duplicate retention and evolution that might contribute to pigmentary diversity among teleosts.

          Our study therefore strongly supports the hypothesis that WGDs have promoted the increase of complexity and diversity during vertebrate phenotypic evolution.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The amphioxus genome and the evolution of the chordate karyotype.

            Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference

              PHYML Online is a web interface to PHYML, a software that implements a fast and accurate heuristic for estimating maximum likelihood phylogenies from DNA and protein sequences. This tool provides the user with a number of options, e.g. nonparametric bootstrap and estimation of various evolutionary parameters, in order to perform comprehensive phylogenetic analyses on large datasets in reasonable computing time. The server and its documentation are available at .
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                2009
                25 November 2009
                2009
                25 November 2009
                : 1
                : 479-493
                Affiliations
                [* ]Physiological Chemistry I, University of Würzburg, Biozentrum, Würzburg, Germany
                []Institut de Génomique Fonctionelle de Lyon, Université de Lyon, Institut Fédératif Biosciences Gerland Lyon Sud, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Ècole Normale Supérieure de Lyon, France
                Author notes

                Kenneth Wolfe, Associate Editor

                Article
                10.1093/gbe/evp050
                2839281
                20333216
                916bd86f-f79b-4eba-bf24-ec595836c441
                © The Author(s) 2009. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 November 2009
                Categories
                Research Articles

                Genetics
                fish,genome duplication,melanocyte,functional module,conserved synteny,pigment cell
                Genetics
                fish, genome duplication, melanocyte, functional module, conserved synteny, pigment cell

                Comments

                Comment on this article