8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of simulated keratometric changes following wavefront-guided and wavefront-optimized myopic laser-assisted in situ keratomileusis

      research-article
      ,
      Clinical Ophthalmology (Auckland, N.Z.)
      Dove Medical Press
      LASIK, keratometry, wavefront guided, wavefront optimized

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The aim of the study was to determine and compare the relationship between change in simulated keratometry (K) and degree of refractive correction in wavefront-guided (WFG) and wavefront-optimized (WFO) myopic laser-assisted in situ keratomileusis (LASIK).

          Methods

          A total of 51 patients were prospectively randomized to WFG LASIK in one eye and WFO LASIK in the contralateral eye at the Byers Eye Institute, Stanford University. Changes in simulated K and refractive error were determined at 1 year post-operatively. Linear regression was employed to calculate the slope of change in simulated K (ΔK) for change in refractive error (ΔSE). The mean ratio (ΔK/ΔSE) was also calculated.

          Results

          The ratio of ΔK to ΔSE was larger for WFG LASIK compared to WFO LASIK when comparing the slope (ΔK/ΔSE) as determined by linear regression (0.85 vs 0.83, p = 0.04). Upon comparing the mean ratio (ΔK/ΔSE), subgroup analysis revealed that ΔK/ΔSE was larger for WFG LASIK for refractive corrections of >3.00 D and >4.00 D (0.89 vs 0.83; p = 0.0323 and 0.88 vs 0.83; p = 0.0466, respectively). Both linear regression and direct comparison of the mean ratio (ΔK/ΔSE) for refractive corrections <4.00 D and >4.00 D revealed no difference in ΔK/ΔSE between smaller and larger refractive corrections.

          Conclusion

          WFO LASIK requires a smaller amount of corneal flattening compared to WFG LASIK for a given degree of refractive correction. For both, there was no significant difference in change in corneal curvature for a given degree of refractive error between smaller and larger corrections.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy.

          To assess the validity of corneal power measurement and standard intraocular lens power (IOLP) calculation after photorefractive keratectomy (PRK). Nonrandomized, prospective, cross-sectional, clinical study. A total of 31 eyes of 21 females and 10 males with a mean age at the time of surgery of 32.3 +/- 6.6 years (range, 24.4-49.5 years). Subjective refractometry, standard keratometry, TMS-1 corneal topography analysis, and pachymetry were performed before and 15.8 +/- 10.4 months after PRK for myopia (n = 24, -1 .5 to -8.0 diopters [D], mean -5.4 +/- 1.9 D) or myopic astigmatism (n = 7, sphere -2.0 to -7.5 D, mean -4.4 +/- 1.9 D; cylinder -1.0 to -3.0 D, mean -1.9 +/- 0.7 D). The IOLP calculations were done using two different formulas (SRK/T and HAIGIS). Keratometric power (K) and topographic simulated keratometric power (TOPO) as measured (Kmeas, TOPOmeas) and as calculated according to the change of power of the anterior corneal surface or according to the spherical equivalent change after PRK (Kcalc, TOPOcalc), IOLP for emmetropia, and postoperative ametropia for calculated corneal powers were assessed in a model. After PRK, mean Kmeas and TOPOmeas were significantly greater (0.4-1.4 D, maximum 3.3 D) than mean KRcalc and TOPOcalc (P 1 D) than IOLP values using topographic readings (P < 0.0001). The theoretically induced mean refractive error after cataract surgery ranged from +0.4 to +1.4 (maximum, +3.1) D. Corneal power overestimation and IOLP underestimation correlated significantly with the spherical equivalent change after PRK (P = 0.001) and the intended ablation depth during PRK (P = 0.004). To avoid underestimation of IOLP and hyperopia after cataract surgery following PRK, measured corneal power values must be corrected. The calculation method using spherical equivalent change of refraction at the corneal plane seems to be the most appropriate method. In comparison with this method, direct power measurements underestimate corneal flattening after PRK by 24% on average. Use of conventional topography analysis seems to increase the risk of error. However, because this study is retrospective and theoretical, there is still a need for a large prospective investigation to validate the authors' findings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intraocular lens power calculations after myopic laser refractive surgery: a comparison of methods in 173 eyes.

            To evaluate and compare published methods of intraocular lens (IOL) power calculation after myopic laser refractive surgery in a large, multi-surgeon study. Retrospective case series. A total of 173 eyes of 117 patients who had uneventful LASIK (89) or photorefractive keratectomy (84) for myopia and subsequent cataract surgery. Data were collected from primary sources in patient charts. The Clinical History Method (vertex corrected to the corneal plane), the Aramberri Double-K, the Latkany Flat-K, the Feiz and Mannis, the R-Factor, the Corneal Bypass, the Masket (2006), the Haigis-L, and the Shammas.cd postrefractive adjustment methods were evaluated in conjunction with third- and fourth-generation optical vergence formulas, as appropriate. Intraocular lens power required for emmetropia was back-calculated using stable post-cataract surgery manifest refraction and implanted IOL power, and then formula accuracy was compared. Prediction error arithmetic mean ± standard deviation (SD), range (minimum and maximum), and percent within 0 to -1.0 diopters (D), ±0.5 D, ±1.0 D, and ±2.0 D relative to target refraction. The top 5 corneal power adjustment techniques and formula combinations in terms of mean prediction errors, standard deviations, and minimizing hyperopic "refractive surprises" were the Masket with the Hoffer Q formula, the Shammas.cd with the Shammas-PL formula, the Haigis-L, the Clinical History Method with the Hoffer Q, and the Latkany Flat-K with the SRK/T with mean arithmetic prediction errors and standard deviations of -0.18±0.87 D, -0.10±1.02 D, -0.26±1.13 D, -0.27±1.04 D, and -0.37±0.91 D, respectively. By using these methods, 70% to 85% of eyes could achieve visual outcomes within 1.0 D of target refraction. The Shammas and the Haigis-L methods have the advantage of not requiring potentially inaccurate historical information. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intraocular lens power calculation after laser in situ keratomileusis for myopia and hyperopia: a standardized approach.

              (1) To determine the effect of myopic and hyperopic laser in situ keratomileusis (LASIK) on calculation of intraocular lens (IOL) power. (2) To determine a standard way to approach the IOL power determination after LASIK, and (3) To compare different suggested methods. Biometric analysis and theoretical calculation of IOL powers for eyes undergoing LASIK for myopia and hyperopia were performed. Manual keratometry after LASIK for myopia resulted in underestimation of IOL power. Manual keratometry after hyperopic LASIK resulted in overestimation of IOL power. The amount of error was directly related to the amount of correction by LASIK. The pre-LASIK refraction can be used theoretically to determine an accurate IOL power.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                Clinical Ophthalmology
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove Medical Press
                1177-5467
                1177-5483
                2018
                29 March 2018
                : 12
                : 613-619
                Affiliations
                Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
                Author notes
                Correspondence: Edward E Manche, Byers Eye Institute, Stanford University, 2452 Watson Court, Palo Alto, CA 94303, USA, Tel +1 650 723 6995, Fax +1 650 723 7918, Email edward.manche@ 123456stanford.edu
                Article
                opth-12-613
                10.2147/OPTH.S161387
                5880184
                29636597
                917806c6-2ef2-4344-bcc7-01a179642676
                © 2018 Lee and Manche. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Ophthalmology & Optometry
                lasik,keratometry,wavefront guided,wavefront optimized
                Ophthalmology & Optometry
                lasik, keratometry, wavefront guided, wavefront optimized

                Comments

                Comment on this article