88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycomb proteins are epigenetic regulators that localize to developmental loci in the early embryo where they mediate lineage-specific gene repression. In Drosophila, these repressors are recruited to sequence elements by DNA binding proteins associated with Polycomb repressive complex 2 (PRC2). However, the sequences that recruit PRC2 in mammalian cells have remained obscure. To address this, we integrated a series of engineered bacterial artificial chromosomes into embryonic stem (ES) cells and examined their chromatin. We found that a 44 kb region corresponding to the Zfpm2 locus initiates de novo recruitment of PRC2. We then pinpointed a CpG island within this locus as both necessary and sufficient for PRC2 recruitment. Based on this causal demonstration and prior genomic analyses, we hypothesized that large GC-rich elements depleted of activating transcription factor motifs mediate PRC2 recruitment in mammals. We validated this model in two ways. First, we showed that a constitutively active CpG island is able to recruit PRC2 after excision of a cluster of activating motifs. Second, we showed that two 1 kb sequence intervals from the Escherichia coli genome with GC-contents comparable to a mammalian CpG island are both capable of recruiting PRC2 when integrated into the ES cell genome. Our findings demonstrate a causal role for GC-rich sequences in PRC2 recruitment and implicate a specific subset of CpG islands depleted of activating motifs as instrumental for the initial localization of this key regulator in mammalian genomes.

          Author Summary

          Key developmental genes are precisely turned on or off during development, thus creating a complex, multi-tissue embryo. The mechanism that keeps genes off, or repressed, is crucial to proper development. In embryonic stem cells, Polycomb repressive complex 2 (PRC2) is recruited to the promoters of these developmental genes and helps to maintain repression in the appropriate tissues through development. How PRC2 is initially recruited to these genes in the early embryo remains elusive. Here we experimentally demonstrate that stretches of GC-rich DNA, termed CpG islands, can initiate recruitment of PRC2 in embryonic stem cells when they are transcriptionally-inactive. Surprisingly, we find that GC-rich DNA from bacterial genomes can also initiate recruitment of PRC2 in embryonic stem cells. This supports a model where inactive GC-rich DNA can itself suffice to recruit PRC2 even in the absence of more complex DNA sequence motifs.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA as modular scaffold of histone modification complexes.

          Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromatin signatures of pluripotent cell lines.

            Epigenetic genome modifications are thought to be important for specifying the lineage and developmental stage of cells within a multicellular organism. Here, we show that the epigenetic profile of pluripotent embryonic stem cells (ES) is distinct from that of embryonic carcinoma cells, haematopoietic stem cells (HSC) and their differentiated progeny. Silent, lineage-specific genes replicated earlier in pluripotent cells than in tissue-specific stem cells or differentiated cells and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. Unusually, in ES cells these markers of open chromatin were also combined with H3K27 trimethylation at some non-expressed genes. Thus, pluripotency of ES cells is characterized by a specific epigenetic profile where lineage-specific genes may be accessible but, if so, carry repressive H3K27 trimethylation modifications. H3K27 methylation is functionally important for preventing expression of these genes in ES cells as premature expression occurs in embryonic ectoderm development (Eed)-deficient ES cells. Our data suggest that lineage-specific genes are primed for expression in ES cells but are held in check by opposing chromatin modifications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Combining evidence using p-values: application to sequence homology searches.

              To illustrate an intuitive and statistically valid method for combining independent sources of evidence that yields a p-value for the complete evidence, and to apply it to the problem of detecting simultaneous matches to multiple patterns in sequence homology searches. In sequence analysis, two or more (approximately) independent measures of the membership of a sequence (or sequence region) in some class are often available. We would like to estimate the likelihood of the sequence being a member of the class in view of all the available evidence. An example is estimating the significance of the observed match of a macromolecular sequence (DNA or protein) to a set of patterns (motifs) that characterize a biological sequence family. An intuitive way to do this is to express each piece of evidence as a p-value, and then use the product of these p-values as the measure of membership in the family. We derive a formula and algorithm (QFAST) for calculating the statistical distribution of the product of n independent p-values. We demonstrate that sorting sequences by this p-value effectively combines the information present in multiple motifs, leading to highly accurate and sensitive sequence homology searches.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2010
                December 2010
                9 December 2010
                : 6
                : 12
                : e1001244
                Affiliations
                [1 ]Howard Hughes Medical Institute and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
                [2 ]Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [3 ]Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [4 ]Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [5 ]Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
                [6 ]Neuro-Oncology Division, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                University of California San Francisco, United States of America
                Author notes

                Conceived and designed the experiments: EMM RPK BEB. Performed the experiments: EMM RPK TT VWZ BI ASC MK. Analyzed the data: EMM RPK. Wrote the paper: EMM RPK BEB.

                Article
                10-PLGE-RA-EP-3422R3
                10.1371/journal.pgen.1001244
                3000368
                21170310
                917e1e84-bbd4-4569-95a0-565f7c06191a
                Mendenhall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 June 2010
                : 9 November 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Developmental Biology/Cell Differentiation
                Developmental Biology/Stem Cells
                Genetics and Genomics/Epigenetics
                Genetics and Genomics/Gene Expression
                Molecular Biology/Chromatin Structure
                Molecular Biology/Histone Modification

                Genetics
                Genetics

                Comments

                Comment on this article