6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: This study aims to analyze the effect of physical activity practice on the postural control state of school children. If such an effect was detected, the second aim of the study was to identify which specific capacities of postural control benefited the most from physical activity. Methods: A cross-sectional study was performed using a convenience sample of 118 healthy children (54 girls) with a mean age of 10.3 ± 1.2 years. Their weight and height were measured. The accelerometric assessment of balance included four different tests in static balance and walking. Results: Physical activity habit prevalence was 38.9% in girls and 60.9% in boys, and its frequency was 2.3 days per week in girls and 2.8 days in boys. The active children obtained lower accelerations, but the active and sedentary girls showed lower accelerometric values than the active boys. The logistic regression analysis demonstrated the influence of sex on the accelerations of the body ( p < 0.001), regardless of the habit of physical activity. Conclusions: Active children have better postural control than sedentary children, although sedentary girls have better balance than active boys. Therefore, physical activity practice seems to favor a more efficient development of postural control, but it cannot level or reverse the effect of the neurophysiological factors that are conditioned by sex.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research.

          "Physical activity," "exercise," and "physical fitness" are terms that describe different concepts. However, they are often confused with one another, and the terms are sometimes used interchangeably. This paper proposes definitions to distinguish them. Physical activity is defined as any bodily movement produced by skeletal muscles that results in energy expenditure. The energy expenditure can be measured in kilocalories. Physical activity in daily life can be categorized into occupational, sports, conditioning, household, or other activities. Exercise is a subset of physical activity that is planned, structured, and repetitive and has as a final or an intermediate objective the improvement or maintenance of physical fitness. Physical fitness is a set of attributes that are either health- or skill-related. The degree to which people have these attributes can be measured with specific tests. These definitions are offered as an interpretational framework for comparing studies that relate physical activity, exercise, and physical fitness to health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exercise training increases size of hippocampus and improves memory.

            The hippocampus shrinks in late adulthood, leading to impaired memory and increased risk for dementia. Hippocampal and medial temporal lobe volumes are larger in higher-fit adults, and physical activity training increases hippocampal perfusion, but the extent to which aerobic exercise training can modify hippocampal volume in late adulthood remains unknown. Here we show, in a randomized controlled trial with 120 older adults, that aerobic exercise training increases the size of the anterior hippocampus, leading to improvements in spatial memory. Exercise training increased hippocampal volume by 2%, effectively reversing age-related loss in volume by 1 to 2 y. We also demonstrate that increased hippocampal volume is associated with greater serum levels of BDNF, a mediator of neurogenesis in the dentate gyrus. Hippocampal volume declined in the control group, but higher preintervention fitness partially attenuated the decline, suggesting that fitness protects against volume loss. Caudate nucleus and thalamus volumes were unaffected by the intervention. These theoretically important findings indicate that aerobic exercise training is effective at reversing hippocampal volume loss in late adulthood, which is accompanied by improved memory function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?

              Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                10 September 2020
                September 2020
                : 9
                : 9
                : 2919
                Affiliations
                [1 ]Faculty of Education and Sport Sciences, University of Vigo, Campus a Xunqueira, s/n. 36005 Pontevedra, Spain; jlsoidan@ 123456uvigo.es (J.L.G.-S.); jesgarcia@ 123456alumnos.uvigo.es (J.G.-L.)
                [2 ]Nursing and Physical Therapy Department, Faculty of Health Sciences, Campus Ponferrada, University of León, 2440 Ponferrada, Spain
                [3 ]Health Service from Galicia (SERGAS), Galician Health Services—Ourense Hospital, s/n. 32005 Ourense, Spain; anxelasoro@ 123456hotmail.es
                Author notes
                [* ]Correspondence: rleir@ 123456unileon.es ; Tel.: +34-987-44-20-00
                Author information
                https://orcid.org/0000-0001-8795-6731
                https://orcid.org/0000-0002-5622-990X
                https://orcid.org/0000-0001-7502-7644
                Article
                jcm-09-02919
                10.3390/jcm9092919
                7565156
                32927763
                91903727-8ebe-4149-a1fc-05fd580fb0db
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 August 2020
                : 09 September 2020
                Categories
                Article

                postural balance,exercise,child development,sex characteristics

                Comments

                Comment on this article