9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical uses of GM-CSF, a critical appraisal and update

      review-article
      ,
      Biologics : Targets & Therapy
      Dove Medical Press
      GM-CSF, G-CSF, cancer, hematopoietic cytokines

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of granulocyte-macrophage-colony-stimulating factor (GM-CSF) in the supportive care of cancer patients has been evaluated with promising results. More recently, GM-CSF has been added to regimens for the mobilization of hematopoietic progenitor cells. An expanding role for GM-CSF in regulating immune responses has been recognized based upon its activity on the development and maturation of antigen presenting cells and its capability for skewing the immune system toward Th1-type responses. GM-CSF has been shown to preferentially enhance both the numbers and activity of type 1 dendritic cells (DC1), the subsets of dendritic cells responsible for initiating cytotoxic immune responses. The increase in DC1 content and activity following local and systemic GM-CSF administration support a role for GM-CSF as an immune stimulant and vaccine adjuvant in cancer patients. GM-CSF has shown clinical activity as an immune stimulant in tumor cell and dendritic cell vaccines, and may increase antibody-dependent cellular cytotoxicity. The successful use of myeloid acting cytokines to enhance anti-tumor responses will likely require the utilization of GM-CSF in combination with cytotoxic or other targeted therapies.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          The nature of the principal type 1 interferon-producing cells in human blood.

          Interferons (IFNs) are the most important cytokines in antiviral immune responses. "Natural IFN-producing cells" (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline.

            To update the 2000 American Society of Clinical Oncology guideline on the use of hematopoietic colony-stimulating factors (CSF). The Update Committee completed a review and analysis of pertinent data published from 1999 through September 2005. Guided by the 1996 ASCO clinical outcomes criteria, the Update Committee formulated recommendations based on improvements in survival, quality of life, toxicity reduction and cost-effectiveness. The 2005 Update Committee agreed unanimously that reduction in febrile neutropenia (FN) is an important clinical outcome that justifies the use of CSFs, regardless of impact on other factors, when the risk of FN is approximately 20% and no other equally effective regimen that does not require CSFs is available. Primary prophylaxis is recommended for the prevention of FN in patients who are at high risk based on age, medical history, disease characteristics, and myelotoxicity of the chemotherapy regimen. CSF use allows a modest to moderate increase in dose-density and/or dose-intensity of chemotherapy regimens. Dose-dense regimens should only be used within an appropriately designed clinical trial or if supported by convincing efficacy data. Prophylactic CSF for patients with diffuse aggressive lymphoma aged 65 years and older treated with curative chemotherapy (CHOP or more aggressive regimens) should be given to reduce the incidence of FN and infections. Current recommendations for the management of patients exposed to lethal doses of total body radiotherapy, but not doses high enough to lead to certain death due to injury to other organs, includes the prompt administration of CSF or pegylated G-CSF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity.

              To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4+ and CD8+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.
                Bookmark

                Author and article information

                Journal
                Biologics
                Biologics: Targets & Therapy
                Biologics : Targets & Therapy
                Dove Medical Press
                1177-5475
                1177-5491
                March 2008
                March 2008
                : 2
                : 1
                : 13-27
                Affiliations
                Emory University, Winship Cancer Institute, Atlanta, GA, USA
                Author notes
                Correspondence: Martha Arellano Emory University, Winship Cancer Institute, 1365C Clifton Road, Suite C2068, Atlanta, Georgia, USA 30322 Email martha.arellano@ 123456emoryhealthcare.org
                Article
                btt-2-13
                10.2147/btt.s1355
                2727781
                19707424
                91b4c2b7-526b-4abb-9ad4-8cdedd1cd10d
                © 2008 Dove Medical Press Limited. All rights reserved
                History
                Categories
                Review

                cancer,g-csf,gm-csf,hematopoietic cytokines
                cancer, g-csf, gm-csf, hematopoietic cytokines

                Comments

                Comment on this article