8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Assessment of the fertiliser potential of digestates from farm and agroindustrial residues

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Composting of animal manures and chemical criteria for compost maturity assessment. A review.

          New livestock production systems, based on intensification in large farms, produce huge amount of manures and slurries without enough agricultural land for their direct application as fertilisers. Composting is increasingly considered a good way for recycling the surplus of manure as a stabilised and sanitised end-product for agriculture, and much research work has been carried out in the last decade. However, high quality compost should be produced to overcome the cost of composting. In order to provide and review the information found in the literature about manure composting, the first part of this paper explains the basic concepts of the composting process and how manure characteristics can influence its performance. Then, a summary of those factors such as nitrogen losses (which directly reduce the nutrient content), organic matter humification and compost maturity which affect the quality of composts produced by manure composting is presented. Special attention has been paid to the relevance of using an adequate bulking agent for reducing N-losses and the necessity of standardising the maturity indices due to their great importance amongst compost quality criteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimisation of the anaerobic digestion of agricultural resources.

            It is in the interest of operators of anaerobic digestion plants to maximise methane production whilst concomitantly reducing the chemical oxygen demand of the digested material. Although the production of biogas through anaerobic digestion is not a new idea, commercial anaerobic digestion processes are often operated at well below their optimal performance due to a variety of factors. This paper reviews current optimisation techniques associated with anaerobic digestion and suggests possible areas where improvements could be made, including the basic design considerations of a single or multi-stage reactor configuration, the type, power and duration of the mixing regime and the retention of active microbial biomass within the reactor. Optimisation of environmental conditions within the digester such as temperature, pH, buffering capacity and fatty acid concentrations is also discussed. The methane-producing potential of various agriculturally sourced feedstocks has been examined, as has the advantages of co-digestion to improve carbon-to-nitrogen ratios and the use of pre-treatments and additives to improve hydrolysis rates or supplement essential nutrients which may be limiting. However, perhaps the greatest shortfall in biogas production is the lack of reliable sensory equipment to monitor key parameters and suitable, parallelised control systems to ensure that the process continually operates at optimal performance. Modern techniques such as software sensors and powerful, flexible controllers are capable of solving these problems. A direct comparison can be made here with, for instance, oil refineries where a more mature technology uses continuous in situ monitoring and associated feedback procedures to routinely deliver continuous, optimal performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW.

              The transformation of organic matter during anaerobic digestion of mixtures of energetic crops, cow slurry, agro-industrial waste and organic fraction of municipal solid waste (OFMSW) was studied by analysing different samples at diverse points during the anaerobic digestion process in a full-scale plant. Both chemical (fiber analysis) and spectroscopic approaches ((13)C CPMAS NMR) indicated the anaerobic digestion process proceeded by degradation of more labile fraction (e.g. carbohydrate-like molecules) and concentration of more recalcitrant molecules (lignin and non-hydrolysable lipids). These modifications determined a higher degree of biological stability of digestate with respect to the starting mixture, as suggested, also, by the good correlations found between the cumulative oxygen uptake (OD(20)), and the sum of (cellulose+hemicellulose+cell soluble) contents of biomasses detected by fiber analysis (r=0.99; P<0.05), and both O-alkyl-C (r=0.98; P<0.05) and alkyl-C (r=-0.99; P<0.05) measured by (13)C CPMAS NMR.
                Bookmark

                Author and article information

                Journal
                Biomass and Bioenergy
                Biomass and Bioenergy
                Elsevier BV
                09619534
                May 2012
                May 2012
                : 40
                :
                : 181-189
                Article
                10.1016/j.biombioe.2012.02.018
                91bab70c-6984-4ceb-b693-f05110c4edad
                © 2012

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article