2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Small-conductance Ca2+-activated K+ channels: form and function.

      Annual review of physiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small-conductance Ca(2+)-activated K(+) channels (SK channels) are widely expressed throughout the central nervous system. These channels are activated solely by increases in intracellular Ca(2+). SK channels are stable macromolecular complexes of the ion pore-forming subunits with calmodulin, which serves as the intrinsic Ca(2+) gating subunit, as well as with protein kinase CK2 and protein phosphatase 2A, which modulate Ca(2+) sensitivity. Well-known for their roles in regulating somatic excitability in central neurons, SK channels are also expressed in the postsynaptic membrane of glutamatergic synapses, where their activation and regulated trafficking modulate synaptic transmission and the induction and expression of synaptic plasticity, thereby affecting learning and memory. In this review we discuss the molecular and functional properties of SK channels and their physiological roles in central neurons.

          Related collections

          Author and article information

          Journal
          21942705
          10.1146/annurev-physiol-020911-153336

          Comments

          Comment on this article

          scite_