1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diosmetin has therapeutic efficacy in colitis regulating gut microbiota, inflammation, and oxidative stress via the circ-Sirt1/Sirt1 axis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Ulcerative colitis

          Ulcerative colitis is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. The pathogenesis is multifactorial, involving genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Patients with ulcerative colitis have mucosal inflammation starting in the rectum that can extend continuously to proximal segments of the colon. Ulcerative colitis usually presents with bloody diarrhoea and is diagnosed by colonoscopy and histological findings. The aim of management is to induce and then maintain remission, defined as resolution of symptoms and endoscopic healing. Treatments for ulcerative colitis include 5-aminosalicylic acid drugs, steroids, and immunosuppressants. Some patients can require colectomy for medically refractory disease or to treat colonic neoplasia. The therapeutic armamentarium for ulcerative colitis is expanding, and the number of drugs with new targets will rapidly increase in coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of circRNA biogenesis.

            Unlike linear RNAs terminated with 5' caps and 3' tails, circular RNAs are characterized by covalently closed loop structures with neither 5' to 3' polarity nor polyadenylated tail. This intrinsic characteristic has led to the general under-estimation of the existence of circular RNAs in previous polyadenylated transcriptome analyses. With the advent of specific biochemical and computational approaches, a large number of circular RNAs from back-spliced exons (circRNAs) have been identified in various cell lines and across different species. Recent studies have uncovered that back-splicing requires canonical spliceosomal machinery and can be facilitated by both complementary sequences and specific protein factors. In this review, we highlight our current understanding of the regulation of circRNA biogenesis, including both the competition between splicing and back-splicing and the previously under-appreciated alternative circularization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gut-liver axis in liver disease: pathophysiological basis for therapy

              The gut-liver axis refers to the bidirectional relationship between the gut and its microbiota, and the liver, resulting from the integration of signals generated by dietary, genetic and environmental factors. This reciprocal interaction is established by the portal vein which enables transport of gut-derived products directly to the liver, and the liver feedback route of bile and antibody secretion to the intestine. The intestinal mucosal and vascular barrier is the functional and anatomical structure that serves as a playground for the interactions between the gut and the liver, limiting the systemic dissemination of microbes and toxins while allowing nutrients to access the circulation and to reach the liver. The control of microbial communities is critical to maintaining homeostasis of the gut-liver axis, and as part of this bidirectional communication the liver shapes intestinal microbial communities. Alcohol disrupts the gut-liver axis at multiple interconnected levels, including the gut microbiome, mucus barrier, epithelial barrier and at the level of antimicrobial peptide production, which increases microbial exposure and the proinflammatory environment of the liver. Growing evidence indicates the pathogenetic role of microbe-derived metabolites, such as trimethylamine, secondary bile acids, short-chain fatty acids and ethanol, in the pathogenesis of non-alcoholic fatty liver disease. Cirrhosis by itself is associated with profound alterations in gut microbiota and damage at the different levels of defence of the intestinal barrier, including the epithelial, vascular and immune barriers. The relevance of the severe disturbance of the intestinal barrier in cirrhosis has been linked to translocation of live bacteria, bacterial infections and disease progression. The identification of the elements of the gut-liver axis primarily damaged in each chronic liver disease offers possibilities for intervention. Beyond antibiotics, upcoming therapies centred on the gut include new generations of probiotics, bacterial metabolites (postbiotics), faecal microbial transplantation, and carbon nanoparticles. FXR-agonists target both the gut and the liver and are currently being tested in different liver diseases. Finally, synthetic biotic medicines, phages that target specific bacteria or therapies that create physical barriers between the gut and the liver offer new therapeutic approaches.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacologica Sinica
                Acta Pharmacol Sin
                Springer Science and Business Media LLC
                1671-4083
                1745-7254
                July 14 2021
                Article
                10.1038/s41401-021-00726-0
                34262136
                91d39b8e-cc3d-4efc-9f66-e4f636fb6445
                © 2021

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article