3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multimerization variants as potential drivers of neofunctionalization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A high-throughput analysis of protein complex variants among orthologs provides a mechanistic model for neofunctionalization.

          Abstract

          Whole-genome duplications are common during evolution, creating genetic redundancy that can enable cellular innovations. Novel protein-protein interactions provide a route to diversified gene functions, but, at present, there is limited proteome-scale knowledge on the extent to which variability in protein complex formation drives neofunctionalization. Here, we used protein correlation profiling to test for variability in apparent mass among thousands of orthologous proteins isolated from diverse species and cell types. Variants in protein complex size were unexpectedly common, in some cases appearing after relatively recent whole-genome duplications or an allopolyploidy event. In other instances, variants such as those in the carbonic anhydrase orthologous group reflected the neofunctionalization of ancient paralogs that have been preserved in extant species. Our results demonstrate that homo- and heteromer formation have the potential to drive neofunctionalization in diverse classes of enzymes, signaling, and structural proteins.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          MUSCLE: multiple sequence alignment with high accuracy and high throughput.

          We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Phyre2 web portal for protein modeling, prediction and analysis.

            Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ *

              Protein quantification without isotopic labels has been a long-standing interest in the proteomics field. However, accurate and robust proteome-wide quantification with label-free approaches remains a challenge. We developed a new intensity determination and normalization procedure called MaxLFQ that is fully compatible with any peptide or protein separation prior to LC-MS analysis. Protein abundance profiles are assembled using the maximum possible information from MS signals, given that the presence of quantifiable peptides varies from sample to sample. For a benchmark dataset with two proteomes mixed at known ratios, we accurately detected the mixing ratio over the entire protein expression range, with greater precision for abundant proteins. The significance of individual label-free quantifications was obtained via a t test approach. For a second benchmark dataset, we accurately quantify fold changes over several orders of magnitude, a task that is challenging with label-based methods. MaxLFQ is a generic label-free quantification technology that is readily applicable to many biological questions; it is compatible with standard statistical analysis workflows, and it has been validated in many and diverse biological projects. Our algorithms can handle very large experiments of 500+ samples in a manageable computing time. It is implemented in the freely available MaxQuant computational proteomics platform and works completely seamlessly at the click of a button.
                Bookmark

                Author and article information

                Journal
                Sci Adv
                Sci Adv
                SciAdv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                March 2021
                26 March 2021
                : 7
                : 13
                : eabf0984
                Affiliations
                [1 ]Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
                [2 ]Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
                [3 ]Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
                Author notes
                [* ]Corresponding author. Email: dszyman@ 123456purdue.edu
                Author information
                http://orcid.org/0000-0001-5260-0153
                http://orcid.org/0000-0001-8255-424X
                Article
                abf0984
                10.1126/sciadv.abf0984
                7997512
                33771868
                91d7eefc-d4fd-4ce8-97fa-57ab75d630dd
                Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 03 October 2020
                : 29 January 2021
                Funding
                Funded by: doi http://dx.doi.org/10.13039/100000001, National Science Foundation;
                Award ID: 1127027
                Funded by: doi http://dx.doi.org/10.13039/100000001, National Science Foundation;
                Award ID: 1444610
                Categories
                Research Article
                Research Articles
                SciAdv r-articles
                Evolutionary Biology
                Custom metadata
                Anne Suarez

                Comments

                Comment on this article