25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Analysis of Genome-Wide Association Studies in Family-Based Designs: A Universal, Robust Analysis Approach and an Application to Four Genome-Wide Association Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1) in 4 genome-wide association studies.

          Author Summary

          In genome-wide association studies, the multiple testing problem and confounding due to population stratification have been intractable issues. Family-based designs have considered only the transmission of genotypes from founder to nonfounder to prevent sensitivity to the population stratification, which leads to the loss of information. Here we propose a novel analysis approach that combines mutually independent FBAT and screening statistics in a robust way. The proposed method is more powerful than any other, while it preserves the complete robustness of family-based association tests, which only achieves much smaller power level. Furthermore, the proposed method is virtually as powerful as population-based approaches/designs, even in the absence of population stratification. By nature of the proposed method, it is always robust as long as FBAT is valid, and the proposed method achieves the optimal efficiency if our linear model for screening test reasonably explains the observed data in terms of covariance structure and population admixture. We illustrate the practical relevance of the approach by an application in 4 genome-wide association studies.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A general test of association for quantitative traits in nuclear families.

          High-resolution mapping is an important step in the identification of complex disease genes. In outbred populations, linkage disequilibrium is expected to operate over short distances and could provide a powerful fine-mapping tool. Here we build on recently developed methods for linkage-disequilibrium mapping of quantitative traits to construct a general approach that can accommodate nuclear families of any size, with or without parental information. Variance components are used to construct a test that utilizes information from all available offspring but that is not biased in the presence of linkage or familiality. A permutation test is described for situations in which maximum-likelihood estimates of the variance components are biased. Simulation studies are used to investigate power and error rates of this approach and to highlight situations in which violations of multivariate normality assumptions warrant the permutation test. The relationship between power and the level of linkage disequilibrium for this test suggests that the method is well suited to the analysis of dense maps. The relationship between power and family structure is investigated, and these results are applicable to study design in complex disease, especially for late-onset conditions for which parents are usually not available. When parental genotypes are available, power does not depend greatly on the number of offspring in each family. Power decreases when parental genotypes are not available, but the loss in power is negligible when four or more offspring per family are genotyped. Finally, it is shown that, when siblings are available, the total number of genotypes required in order to achieve comparable power is smaller if parents are not genotyped.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Implementing a unified approach to family-based tests of association.

            We describe a broad class of family-based association tests that are adjusted for admixture; use either dichotomous or measured phenotypes; accommodate phenotype-unknown subjects; use nuclear families, sibships or a combination of the two, permit multiple nuclear families from a single pedigree; incorporate di- or multi-allelic marker data; allow additive, dominant or recessive models; and permit adjustment for covariates and gene-by-environment interactions. The test statistic is basically the covariance between a user-specified function of the genotype and a user-specified function of the trait. The distribution of the statistic is computed using the appropriate conditional distribution of offspring genotypes that adjusts for admixture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Family-based association tests for genomewide association scans.

              With millions of single-nucleotide polymorphisms (SNPs) identified and characterized, genomewide association studies have begun to identify susceptibility genes for complex traits and diseases. These studies involve the characterization and analysis of very-high-resolution SNP genotype data for hundreds or thousands of individuals. We describe a computationally efficient approach to testing association between SNPs and quantitative phenotypes, which can be applied to whole-genome association scans. In addition to observed genotypes, our approach allows estimation of missing genotypes, resulting in substantial increases in power when genotyping resources are limited. We estimate missing genotypes probabilistically using the Lander-Green or Elston-Stewart algorithms and combine high-resolution SNP genotypes for a subset of individuals in each pedigree with sparser marker data for the remaining individuals. We show that power is increased whenever phenotype information for ungenotyped individuals is included in analyses and that high-density genotyping of just three carefully selected individuals in a nuclear family can recover >90% of the information available if every individual were genotyped, for a fraction of the cost and experimental effort. To aid in study design, we evaluate the power of strategies that genotype different subsets of individuals in each pedigree and make recommendations about which individuals should be genotyped at a high density. To illustrate our method, we performed genomewide association analysis for 27 gene-expression phenotypes in 3-generation families (Centre d'Etude du Polymorphisme Humain pedigrees), in which genotypes for ~860,000 SNPs in 90 grandparents and parents are complemented by genotypes for ~6,700 SNPs in a total of 168 individuals. In addition to increasing the evidence of association at 15 previously identified cis-acting associated alleles, our genotype-inference algorithm allowed us to identify associated alleles at 4 cis-acting loci that were missed when analysis was restricted to individuals with the high-density SNP data. Our genotype-inference algorithm and the proposed association tests are implemented in software that is available for free.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2009
                November 2009
                26 November 2009
                : 5
                : 11
                : e1000741
                Affiliations
                [1 ]Department of Statistics, Chung-Ang University, Seoul, Korea
                [2 ]Research Center for Data Science, Chung-Ang University, Seoul, Korea
                [3 ]Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [4 ]Genometrics Section, Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
                [5 ]National Heart, Lung, and Blood Institute and Framingham Heart Study, Bethesda, Maryland, United States of America
                [6 ]Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                [7 ]Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [8 ]Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [9 ]Harvard Medical School, Boston, Massachusetts, United States of America
                [10 ]Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
                [11 ]Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [12 ]Center for Genomic Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [13 ]Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
                University of California San Diego and The Scripps Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: SW CL. Performed the experiments: SW. Analyzed the data: SW JBW RM CJO EKS KB GTO STW. Contributed reagents/materials/analysis tools: SW. Wrote the paper: SW CL.

                Article
                09-PLGE-RA-0807R2
                10.1371/journal.pgen.1000741
                2777973
                19956679
                91ef6a6c-a59d-405e-a6c8-8bf39876f5c8
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 18 May 2009
                : 26 October 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Genetics and Genomics/Complex Traits
                Genetics and Genomics/Genetics of Disease

                Genetics
                Genetics

                Comments

                Comment on this article