8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nuclease-resistant single-stranded DNA controls for nucleic acid amplification assays.

      Journal of Clinical Microbiology
      Bacteriophage M13, chemistry, genetics, DNA, Single-Stranded, metabolism, Deoxyribonucleases, Humans, Nucleic Acid Amplification Techniques, standards, Parvovirus B19, Human, isolation & purification, Reference Standards, Temperature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular diagnostic tests based on the PCR or alternative nucleic acid amplification technologies are commonly used for pathogen screening at blood drawing centers. Contrived process surveillance using test-specific external and internal controls is critical for the efficient leverage of PCR power. We describe here novel control constructs for use in nucleic acid amplification assays for pathogens with a single-stranded DNA genome, e.g., parvovirus B19. These controls are derived from a deletion mutant of the filamentous phage fd-tet, fKN16, and consist of single-stranded DNA packaged in a protein coat. They are essentially noninfectious to Escherichia coli and highly resistant to nuclease degradation. fKN16 based controls can be readily manufactured and highly purified. Despite their confirmed filamentous morphology, they can be precisely and accurately diluted over a wide range. Stability studies reveal that the novel control constructs are highly resistant to temperature stress, regardless of whether they are tested as concentrated stocks in storage buffer or diluted in buffer or human plasma. Real-time amplification curves derived from recombinant control constructs containing a parvovirus B19 specific sequence fragment match those derived from native virus. In summary, our data demonstrate the feasibility of novel nuclease-resistant single-stranded DNA controls as surrogates for parvovirus B19 and their applicability in routine molecular diagnostics.

          Related collections

          Author and article information

          Comments

          Comment on this article