74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occupational Pesticide Exposures and Respiratory Health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pesticides have been widely used to control pest and pest-related diseases in agriculture, fishery, forestry and the food industry. In this review, we identify a number of respiratory symptoms and diseases that have been associated with occupational pesticide exposures. Impaired lung function has also been observed among people occupationally exposed to pesticides. There was strong evidence for an association between occupational pesticide exposure and asthma, especially in agricultural occupations. In addition, we found suggestive evidence for a link between occupational pesticide exposure and chronic bronchitis or COPD. There was inconclusive evidence for the association between occupational pesticide exposure and lung cancer. Better control of pesticide uses and enforcement of safety behaviors, such as using personal protection equipment (PPE) in the workplace, are critical for reducing the risk of developing pesticide-related symptoms and diseases. Educational training programs focusing on basic safety precautions and proper uses of personal protection equipment (PPE) are possible interventions that could be used to control the respiratory diseases associated with pesticide exposure in occupational setting.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

          Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already approved pesticides and the approval of the new compounds in the near future. Thus, new tools or techniques with greater reliability than those already existing are needed to predict the potential hazards of pesticides and thus contribute to reduction of the adverse effects on human health and the environment. On the other hand, the implementation of alternative cropping systems that are less dependent on pesticides, the development of new pesticides with novel modes of action and improved safety profiles, and the improvement of the already used pesticide formulations towards safer formulations (e.g., microcapsule suspensions) could reduce the adverse effects of farming and particularly the toxic effects of pesticides. In addition, the use of appropriate and well-maintained spraying equipment along with taking all precautions that are required in all stages of pesticide handling could minimize human exposure to pesticides and their potential adverse effects on the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of Pesticide Exposure with Neurologic Dysfunction and Disease

            Poisoning by acute high-level exposure to certain pesticides has well-known neurotoxic effects, but whether chronic exposure to moderate levels of pesticides is also neurotoxic is more controversial. Most studies of moderate pesticide exposure have found increased prevalence of neurologic symptoms and changes in neurobehavioral performance, reflecting cognitive and psychomotor dysfunction. There is less evidence that moderate exposure is related to deficits in sensory or motor function or peripheral nerve conduction, but fewer studies have considered these outcomes. It is possible that the most sensitive manifestation of pesticide neurotoxicity is a general malaise lacking in specificity and related to mild cognitive dysfunction, similar to that described for Gulf War syndrome. Most studies have focused on organophosphate insecticides, but some found neuro-toxic effects from other pesticides, including fungicides, fumigants, and organochlorine and carbamate insecticides. Pesticide exposure may also be associated with increased risk of Parkinson disease; several classes of pesticides, including insecticides, herbicides, and fungicides, have been implicated. Studies of other neurodegenerative diseases are limited and inconclusive. Future studies will need to improve assessment of pesticide exposure in individuals and consider the role of genetic susceptibility. More studies of pesticides other than organophosphates are needed. Major unresolved issues include the relative importance of acute and chronic exposure, the effect of moderate exposure in the absence of poisoning, and the relationship of pesticide-related neurotoxicity to neurodegenerative disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of particle size on regional lung deposition--what evidence is there?

              The understanding of deposition of particles in the respiratory tract is of great value to risk assessment of inhalation toxicology and to improve efficiency in drug delivery of inhalation therapies. There are three main basic mechanisms of particle deposition based primarily on particle size: inertial impaction, sedimentation and diffusion. The regional deposition in the lungs can be evaluated in regards to the aerodynamic particle size, in which particle density plays a significant role. In this review paper, we first introduce the available imaging techniques to confirm regional deposition of particles in the human respiratory tract, such as planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET). These technologies have widely advanced and consequently benefited the understanding of deposition pattern, although there is a lack of lung dosimetry techniques to evaluate the deposition of nanoparticles. Subsequently, we present a comprehensive review summarizing the evidence available in the literature that confirms the deposition of smaller particles in the smaller airways as opposed to the larger airways. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                28 November 2013
                December 2013
                : 10
                : 12
                : 6442-6471
                Affiliations
                [1 ]School of Public Health, University of Alberta, 3-276 Edmonton Heath Clinic Academy, 11405-87 Avenue, Edmonton, AB T6G 1C9, Canada; E-Mail: mye@ 123456ualberta.ca
                [2 ]Division of Preventive Medicine, Department of Medicine, University of Alberta, 5-30 University Terrace, 8303-112 Street, Edmonton, AB T6G 2T4, Canada; E-Mail: jeremy.beach@ 123456ualberta.ca
                [3 ]Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, 10-102C Clinical Sciences Building, Edmonton, AB T6G 2G3, Canada; E-Mail: jon.martin@ 123456ualberta.ca
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: sentil@ 123456ualberta.ca ; Tel.: +1-780-492-6505; Fax: +1-780-492-0364.
                Article
                ijerph-10-06442
                10.3390/ijerph10126442
                3881124
                24287863
                91f717b5-3295-41bf-b632-3df994f14e33
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/)

                History
                : 26 August 2013
                : 13 November 2013
                : 14 November 2013
                Categories
                Review

                Public health
                copd,lung function,asthma,occupational,pesticide exposures,respiratory health
                Public health
                copd, lung function, asthma, occupational, pesticide exposures, respiratory health

                Comments

                Comment on this article