1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors : Impact of ABC-transporters on MEK inhibitor PK/PD

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs.

          We have generated mice homozygous for a disruption of the mdr1a (also called mdr3) gene, encoding a drug-transporting P-glycoprotein. The mice were viable and fertile and appeared phenotypically normal, but they displayed an increased sensitivity to the centrally neurotoxic pesticide ivermectin (100-fold) and to the carcinostatic drug vinblastine (3-fold). By comparison of mdr1a (+/+) and (-/-) mice, we found that the mdr1a P-glycoprotein is the major P-glycoprotein in the blood-brain barrier and that its absence results in elevated drug levels in many tissues (especially in brain) and in decreased drug elimination. Our findings explain some of the side effects in patients treated with a combination of carcinostatics and P-glycoprotein inhibitors and indicate that these inhibitors might be useful in selectively enhancing the access of a range of drugs to the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The clinical development of MEK inhibitors.

            Aberrant activation of the RAS-RAF-MEK-ERK1/2 pathway occurs in more than 30% of human cancers. As part of this pathway, MEK1 and MEK2 have crucial roles in tumorigenesis, cell proliferation and inhibition of apoptosis and, therefore, MEK1/2 inhibition is an attractive therapeutic strategy in a number of cancers. Highly selective and potent non-ATP-competitive allosteric MEK1/2 inhibitors have been developed and assessed in numerous clinical studies over the past decade. These agents are not efficacious in a broad range of unselected cancers, although single-agent antitumour activity has been detected mainly in tumours that harbour mutations in genes encoding the members of the RAS and RAF protein families, such as certain melanomas. Combinations of MEK1/2 inhibitors and cytotoxic chemotherapy, and/or other targeted agents are being studied to expand the efficacy of this class of agents. Identifying predictive biomarkers, and delineating de novo and acquired resistance mechanisms are essential for the future clinical development of MEK inhibitors. We discuss the clinical experience with MEK inhibitors to date, and consider the novel approaches to MEK-inhibitor therapy that might improve outcomes and lead to the wider use of such treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers.

              To assess the tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of the mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancer. In part A, patients received escalating doses to determine the maximum-tolerated dose (MTD). In both parts, blood samples were collected to assess PK and PD parameters. In part B, patients were stratified by cancer type (melanoma v other) and randomly assigned to receive the MTD or 50% MTD. Biopsies were collected to determine inhibition of ERK phosphorylation, Ki-67 expression, and BRAF, KRAS, and NRAS mutations. Fifty-seven patients were enrolled. MTD in part A was 200 mg bid, but this dose was discontinued in part B because of toxicity. The 50% MTD (100 mg bid) was well tolerated. Rash was the most frequent and dose-limiting toxicity. Most other adverse events were grade 1 or 2. The PKs were less than dose proportional, with a median half-life of approximately 8 hours and inhibition of ERK phosphorylation in peripheral-blood mononuclear cells at all dose levels. Paired tumor biopsies demonstrated reduced ERK phosphorylation (geometric mean, 79%). Five of 20 patients demonstrated >or= 50% inhibition of Ki-67 expression, and RAF or RAS mutations were detected in 10 of 26 assessable tumor samples. Nine patients had stable disease (SD) for >or= 5 months, including two patients with SD for 19 (thyroid cancer) and 22 (uveal melanoma plus renal cancer) 28-day cycles. AZD6244 was well tolerated with target inhibition demonstrated at the recommended phase II dose. PK analyses supported twice-daily dosing. Prolonged SD was seen in a variety of advanced cancers. Phase II studies are ongoing.
                Bookmark

                Author and article information

                Journal
                International Journal of Cancer
                Int. J. Cancer
                Wiley
                00207136
                January 15 2018
                January 15 2018
                October 04 2017
                : 142
                : 2
                : 381-391
                Affiliations
                [1 ]Division of Pharmacology; The Netherlands Cancer Institute, Plesmanlaan 121; Amsterdam 1066 CX The Netherlands
                [2 ]Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121; Amsterdam 1066 CX The Netherlands
                [3 ]Department of Neurosurgery; Qilu Hospital, Shandong University, Wenhua Xi Road 107; Jinan 250012 People's Republic of China
                [4 ]Department of Pharmacy and Pharmacology; The Netherlands Cancer Institute/MC Slotervaart Hospital, Louwesweg 6; Amsterdam 1066 EC The Netherlands
                [5 ]Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science; Utrecht University, Universiteitsweg 99; Utrecht 3584 CG The Netherlands
                Article
                10.1002/ijc.31052
                28921565
                9202cb84-0b9d-49db-a60a-0dfb6e9e958b
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article