8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica)

      1 , 1 , 1 , 2 , 1 , 3
      Tree Physiology
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.

          A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon dynamics in trees: feast or famine?

              Research on the degree to which carbon (C) availability limits growth in trees, as well as recent trends in climate change and concurrent increases in drought-related tree mortality, have led to a renewed focus on the physiological mechanisms associated with tree growth responses to current and future climate. This has led to some dispute over the role of stored non-structural C compounds as indicators of a tree's current demands for photosynthate. Much of the uncertainty surrounding this issue could be resolved by developing a better understanding of the potential functions of non-structural C stored within trees. In addition to functioning as a buffer to reconcile temporal asynchrony between C demand and supply, the storage of non-structural C compounds may be under greater regulation than commonly recognized. We propose that in the face of environmental stochasticity, large, long-lived trees may require larger C investments in storage pools as safety margins than previously recognized, and that an important function of these pools may be to maintain hydraulic transport, particularly during episodes of severe stress. If so, survival and long-term growth in trees remain a function of C availability. Given that drought, freeze-thaw events and increasing tree height all impose additional constraints on vascular transport, the common trend of an increase in non-structural carbohydrate concentrations with tree size, drought or cold is consistent with our hypothesis. If the regulated maintenance of relatively large constitutive stored C pools in trees serves to maintain hydraulic integrity, then the minimum thresholds are expected to vary depending on the specific tissues, species, environment, growth form and habit. Much research is needed to elucidate the extent to which allocation of C to storage in trees is a passive vs. an active process, the specific functions of stored C pools, and the factors that drive active C allocation to storage.
                Bookmark

                Author and article information

                Journal
                Tree Physiology
                Oxford University Press (OUP)
                0829-318X
                1758-4469
                November 2017
                November 01 2017
                October 13 2017
                November 2017
                November 01 2017
                October 13 2017
                : 37
                : 11
                : 1478-1492
                Affiliations
                [1 ] Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
                [2 ] Unidad de Recursos Forestales, CITA de Aragón, Av. Montañana, 930, 50059 Zaragoza, Spain
                [3 ] Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
                Article
                10.1093/treephys/tpx101
                92075d3f-ba7f-4ac8-96b2-02563d7837ab
                © 2017
                History

                Comments

                Comment on this article