8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adjuvant therapies for Parkinson’s disease: critical evaluation of safinamide

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Safinamide (SAF) is a new drug developed for the treatment of Parkinson’s disease (PD). It is a benzylamino derivative with multiple mechanisms of action and antiparkinsonian, anticonvulsant, and neuroprotective properties. SAF inhibits monoamine oxidase B and dopamine reuptake and glutamate release, blocks voltage-dependent sodium channels, and modulates calcium channels. Although the antiparkinsonian effect can be ascribed in part to the inhibition of the monoamine oxidase B, which is complete at 50 mg, the enhanced benefit seen at the 100 mg dose is probably due to nondopaminergic mechanisms. SAF will represent an important option for patients with both early and advanced PD. In early PD patients, the addition of SAF to dopamine agonists may be an effective treatment strategy to improve motor function, prolong the use of dopamine agonists, and/or delay the introduction of levodopa. In advanced parkinsonian patients, SAF has been demonstrated to significantly increase on time with no, or nontroublesome dyskinesias. All studies performed have demonstrated its efficacy in benefiting both short-term and long-term quality-of-life outcomes in both early and advanced PD patients. SAF has been investigated in long-term (24 months), double-blind, placebo-controlled studies, where it showed a very good safety profile. SAF has not been studied in de novo PD patients, and its potential positive effect on dyskinesia deserves further dedicated studies.

          Video abstract

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: not found

          Monoamine oxidase: isoforms and inhibitors in Parkinson's disease and depressive illness.

          A few years after the foundation of the British Pharmacological Society, monoamine oxidase (MAO) was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamine neurotransmitters, noradrenaline, adrenaline and dopamine (and, later, 5-hydroxytryptamine, as well). Within the next decade, the therapeutic value of inhibitors of MAO in the treatment of depressive illness was established. Although this first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two isoforms, MAO-A and -B, and isoform-selective inhibitors. Selective inhibitors of MAO-B have found a therapeutic role in the treatment of Parkinson's disease and further developments have provided reversible inhibitors of MAO-A, which offer antidepressant activity without the serious side effects of the earlier inhibitors. Clinical observation and subsequent pharmacological analysis have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress in the brain may be critical for the initiation and progress of neurodegeneration and selective inhibition of brain MAO could contribute importantly to lowering such stress. There are complex interactions between free iron levels in brain and MAO, which may have practical outcomes for depressive disorders. These aspects of MAO and its inhibition and some indication of how this important area of pharmacology and therapeutics might develop in the future are summarized in this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cognitive impairment in Parkinson's disease.

            Cognitive impairment plays a role in Parkinson's disease (PD) and has important consequences for patient management. However, many aspects of cognitive impairment in PD remain unclear because of the use of different and often invalid measurement instruments. In this study, a reliable and valid instrument, the SCales for Outcomes in PArkinson's disease-COGnition (SCOPA-COG), was used. To evaluate cognitive functioning in a large cohort of patients with Parkinson's disease and to assess the relations with demographic, disease related and clinical variables. A cohort of 400 patients with PD was evaluated for cognition, motor and non-motor domains, as well as for demographic and disease related characteristics. Results were compared with 150 controls matched for overall age, sex and education distribution. Patients with PD scored significantly lower on all cognitive subdomains compared with controls, with the largest differences for executive functioning and memory. After correction for age and years of education, 22% of patients had impaired cognition, as measured by the total SCOPA-COG score, compared with controls. Across all patients, more severe cognitive impairment was associated with significantly more impairment in motor, autonomic, depressive and psychotic domains. Patients with the postural instability gait difficulty (PIGD) dominant phenotype showed more cognitive impairment compared with patients with the tremor dominant phenotype. Contrary to tremor scores, PIGD scores significantly worsened with increasing disease severity. Cognition is an important domain of the clinical spectrum of PD and poorer cognitive performance is associated with greater impairment in motor and non-motor domains in PD. The difference in cognitive scores between PIGD dominant patients and tremor dominant patients likely reflects more advanced disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B.

              1. Rasagiline [N-propargyl-1R(+)-aminoindan], was examined for its monoamine oxidase (MAO) A and B inhibitor activities in rats together with its S(-)-enantiomer (TVP 1022) and the racemic compound (AGN-1135) and compared to selegiline (1-deprenyl). The tissues that were studied for MAO inhibition were the brain, liver and small intestine. 2. While rasagiline and AGN1135 are highly potent selective irreversible inhibitors of MAO in vitro and in vivo, the S(-) enantiomer is relatively inactive in the tissues examined. 3. The in vitro IC(50) values for inhibition of rat brain MAO activity by rasagiline are 4.43+/-0.92 nM (type B), and 412+/-123 nM (type A). The ED(50) values for ex vivo inhibition of MAO in the brain and liver by a single dose of rasagiline are 0.1+/-0.01, 0.042+/-0.0045 mg kg(-1) respectively for MAO-B, and 6.48+/-0.81, 2.38+/-0.35 mg kg(-1) respectively for MAO-A. 4. Selective MAO-B inhibition in the liver and brain was maintained on chronic (21 days) oral dosage with ED(50) values of 0.014+/-0.002 and 0.013+/-0.001 mg kg(-1) respectively. 5. The degree of selectivity of rasagiline for inhibition of MAO-B as opposed to MAO-A was similar to that of selegiline. Rasagiline was three to 15 times more potent than selegiline for inhibition of MAO-B in rat brain and liver in vivo on acute and chronic administration, but had similar potency in vitro. 6. These data together with lack of tyramine sympathomimetic potentiation by rasagiline, at selective MAO-B inhibitory dosage, indicate that this inhibitor like selegiline may be a useful agent in the treatment of Parkinson's disease in either symptomatic or L-DOPA adjunct therapy, but lack of amphetamine-like metabolites could present a therapeutic advantage for rasagiline.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                05 February 2016
                : 10
                : 609-618
                Affiliations
                Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Rome, Italy
                Author notes
                Correspondence: Fabrizio Stocchi, Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Via della Pisana 235, 00163 Rome, Italy, Tel +39 06 5225 2311, Fax +39 06 6605 8486, Email fabrizio.stocchi@ 123456fastwebnet.it
                Article
                dddt-10-609
                10.2147/DDDT.S77749
                4751980
                26917951
                © 2016 Stocchi and Torti. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article