356
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantifying the effect of sentiment on information diffusion in social media

      research-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Social media has become the main vehicle of information production and consumption online. Millions of users every day log on their Facebook or Twitter accounts to get updates and news, read about their topics of interest, and become exposed to new opportunities and interactions. Although recent studies suggest that the contents users produce will affect the emotions of their readers, we still lack a rigorous understanding of the role and effects of contents sentiment on the dynamics of information diffusion. This work aims at quantifying the effect of sentiment on information diffusion, to understand: (i) whether positive conversations spread faster and/or broader than negative ones (or vice-versa); (ii) what kind of emotions are more typical of popular conversations on social media; and, (iii) what type of sentiment is expressed in conversations characterized by different temporal dynamics. Our findings show that, at the level of contents, negative messages spread faster than positive ones, but positive ones reach larger audiences, suggesting that people are more inclined to share and favorite positive contents, the so-called positive bias. As for the entire conversations, we highlight how different temporal dynamics exhibit different sentiment patterns: for example, positive sentiment builds up for highly-anticipated events, while unexpected events are mainly characterized by negative sentiment. Our contribution represents a step forward to understand how the emotions expressed in short texts correlate with their spreading in online social ecosystems, and may help to craft effective policies and strategies for content generation and diffusion.

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The spread of behavior in an online social network experiment.

          How do social networks affect the spread of behavior? A popular hypothesis states that networks with many clustered ties and a high degree of separation will be less effective for behavioral diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the social space. A competing hypothesis argues that when behaviors require social reinforcement, a network with more clustering may be more advantageous, even if the network as a whole has a larger diameter. I investigated the effects of network structure on diffusion by studying the spread of health behavior through artificially structured online communities. Individual adoption was much more likely when participants received social reinforcement from multiple neighbors in the social network. The behavior spread farther and faster across clustered-lattice networks than across corresponding random networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Experimental evidence of massive-scale emotional contagion through social networks.

            Emotional states can be transferred to others via emotional contagion, leading people to experience the same emotions without their awareness. Emotional contagion is well established in laboratory experiments, with people transferring positive and negative emotions to others. Data from a large real-world social network, collected over a 20-y period suggests that longer-lasting moods (e.g., depression, happiness) can be transferred through networks [Fowler JH, Christakis NA (2008) BMJ 337:a2338], although the results are controversial. In an experiment with people who use Facebook, we test whether emotional contagion occurs outside of in-person interaction between individuals by reducing the amount of emotional content in the News Feed. When positive expressions were reduced, people produced fewer positive posts and more negative posts; when negative expressions were reduced, the opposite pattern occurred. These results indicate that emotions expressed by others on Facebook influence our own emotions, constituting experimental evidence for massive-scale contagion via social networks. This work also suggests that, in contrast to prevailing assumptions, in-person interaction and nonverbal cues are not strictly necessary for emotional contagion, and that the observation of others' positive experiences constitutes a positive experience for people.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A 61-million-person experiment in social influence and political mobilization.

              Human behaviour is thought to spread through face-to-face social networks, but it is difficult to identify social influence effects in observational studies, and it is unknown whether online social networks operate in the same way. Here we report results from a randomized controlled trial of political mobilization messages delivered to 61 million Facebook users during the 2010 US congressional elections. The results show that the messages directly influenced political self-expression, information seeking and real-world voting behaviour of millions of people. Furthermore, the messages not only influenced the users who received them but also the users' friends, and friends of friends. The effect of social transmission on real-world voting was greater than the direct effect of the messages themselves, and nearly all the transmission occurred between 'close friends' who were more likely to have a face-to-face relationship. These results suggest that strong ties are instrumental for spreading both online and real-world behaviour in human social networks.
                Bookmark

                Author and article information

                Contributors
                Journal
                peerj-cs
                PeerJ Computer Science
                PeerJ Comput. Sci.
                PeerJ Inc. (San Francisco, USA )
                2376-5992
                30 September 2015
                : 1
                : e26
                Affiliations
                [1 ]Information Sciences Institute, University of Southern California , Marina Del Rey, CA, United States
                [2 ]School of Informatics and Computing, Indiana University , Bloomington, IN, United States
                Article
                cs-26
                10.7717/peerj-cs.26
                922b3614-2468-4e85-b27a-a7b0a3b08a8a
                © 2015 Ferrara and Yang

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                History
                : 19 June 2015
                : 15 September 2015
                Funding
                Funded by: ONR
                Award ID: N15A-020-0053
                Funded by: NSF
                Award ID: IIS-0811994
                EF was partly supported by ONR grant no. N15A-020-0053. ZY was partly supported by NSF grant no. IIS-0811994. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Data Mining and Machine Learning
                Data Science
                Network Science and Online Social Networks

                Computer science
                Computational social science,Social networks,Social media,Sentiment analysis,Information diffusion

                Comments

                Comment on this article