33
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using optimal subset regression to identify factors associated with insulin resistance and construct predictive models in the US adult population

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In recent decades, with the development of the global economy and the improvement of living standards, insulin resistance (IR) has become a common phenomenon. Current studies have shown that IR varies between races. Therefore, it is necessary to develop individual prediction models for each country. The purpose of this study was to develop a predictive model of IR applicable to the US population.

          Method

          In total, 11 cycles of data from the NHANES database were selected for this study. Of these, participants from 1999 to 2010 ( n  =  14931) were used to establish the model, and participants from 2011 to 2020 ( n  =  13,646) were used to validate the model. Univariate and multivariable logistic regression was used to analyze the factors associated with IR. Optimal subset regression was used to filter the best modeling variables. ROC curves, calibration curves, and decision curve analysis were used to determine the strengths and weaknesses of the model.

          Results

          After screening the variables by optimal subset regression, variables with covariance were excluded, and a total of seven factors (including HDL, LDL, ALB, GLB, GLU, BMI, and waist) were finally included to establish the prediction model. The AUCs were 0.851 and 0.857 in the training and validation sets, respectively, and the Brier value of the calibration curve was 0.153.

          Conclusion

          The optimal subset predictive model proposed in this study has a great performance in predicting IR, and the decision curve analysis shows that it has a high net clinical benefit, which can help clinicians and epidemiologists easily detect IR and take appropriate interventions as early as possible.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Decision curve analysis: a novel method for evaluating prediction models.

          Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes but often require collection of additional information and may be cumbersome to apply to models that yield a continuous result. The authors sought a method for evaluating and comparing prediction models that incorporates clinical consequences,requires only the data set on which the models are tested,and can be applied to models that have either continuous or dichotomous results. The authors describe decision curve analysis, a simple, novel method of evaluating predictive models. They start by assuming that the threshold probability of a disease or event at which a patient would opt for treatment is informative of how the patient weighs the relative harms of a false-positive and a false-negative prediction. This theoretical relationship is then used to derive the net benefit of the model across different threshold probabilities. Plotting net benefit against threshold probability yields the "decision curve." The authors apply the method to models for the prediction of seminal vesicle invasion in prostate cancer patients. Decision curve analysis identified the range of threshold probabilities in which a model was of value, the magnitude of benefit, and which of several models was optimal. Decision curve analysis is a suitable method for evaluating alternative diagnostic and prognostic strategies that has advantages over other commonly used measures and techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Global Epidemic of the Metabolic Syndrome

            Metabolic syndrome, variously known also as syndrome X, insulin resistance, etc., is defined by WHO as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Though there is some variation in the definition by other health care organization, the differences are minor. With the successful conquest of communicable infectious diseases in most of the world, this new non-communicable disease (NCD) has become the major health hazard of modern world. Though it started in the Western world, with the spread of the Western lifestyle across the globe, it has become now a truly global problem. The prevalence of the metabolic syndrome is often more in the urban population of some developing countries than in its Western counterparts. The two basic forces spreading this malady are the increase in consumption of high calorie-low fiber fast food and the decrease in physical activity due to mechanized transportations and sedentary form of leisure time activities. The syndrome feeds into the spread of the diseases like type 2 diabetes, coronary diseases, stroke, and other disabilities. The total cost of the malady including the cost of health care and loss of potential economic activity is in trillions. The present trend is not sustainable unless a magic cure is found (unlikely) or concerted global/governmental/societal efforts are made to change the lifestyle that is promoting it. There are certainly some elements in the causation of the metabolic syndrome that cannot be changed but many are amenable for corrections and curtailments. For example, better urban planning to encourage active lifestyle, subsidizing consumption of whole grains and possible taxing high calorie snacks, restricting media advertisement of unhealthy food, etc. Revitalizing old fashion healthier lifestyle, promoting old-fashioned foods using healthy herbs rather than oil and sugar, and educating people about choosing healthy/wholesome food over junks are among the steps that can be considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of Insulin Action and Insulin Resistance

              The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                09 June 2022
                01 July 2022
                : 11
                : 7
                : e220066
                Affiliations
                [1 ]Medical College of Qinghai University , Xining, People’s Republic of China
                [2 ]College of Traditional Chinese Medicine , Shandong University of Traditional Chinese Medicine, Jinan, China
                [3 ]Department of Clinical Laboratory , The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
                [4 ]Precision Medicine Center , The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
                Author notes
                Correspondence should be addressed to T Hu: hutianyang@ 123456stu.cqmu.edu.cn

                *(R Gong and Y Liu contributed equally to this work)

                Author information
                http://orcid.org/0000-0003-1117-0956
                http://orcid.org/0000-0001-6884-729X
                Article
                EC-22-0066
                10.1530/EC-22-0066
                9254325
                35686717
                922d9598-3ccf-4ba6-ad1f-329da8a5b624
                © The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 19 May 2022
                : 09 June 2022
                Categories
                Research

                insulin resistance,optimal subset regression,calibration curves,nhanes,homa-ir

                Comments

                Comment on this article