Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective efficacy of influenza group 2 hemagglutinin stem-fragment immunogen vaccines

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The stem of the influenza A virus hemagglutinin (HA) is highly conserved and represents an attractive target for a universal influenza vaccine. The 18 HA subtypes of influenza A are phylogenetically divided into two groups, and while protection with group 1 HA stem vaccines has been demonstrated in animal models, studies on group 2 stem vaccines are limited. Thus, we engineered group 2 HA stem-immunogen (SI) vaccines targeting the epitope for the broadly neutralizing monoclonal antibody CR9114 and evaluated vaccine efficacy in mice and ferrets. Immunization induced antibodies that bound to recombinant HA protein and viral particles, and competed with CR9114 for binding to the HA stem. Mice vaccinated with H3 and H7-SI were protected from lethal homologous challenge with X-79 (H3N2) or A/Anhui/1/2013 (H7N9), and displayed moderate heterologous protection. In ferrets, H7-SI vaccination did not significantly reduce weight loss or nasal wash titers after robust 10 7 TCID 50 H7N9 virus challenge. Epitope mapping revealed ferrets developed lower titers of antibodies that bound a narrow range of HA stem epitopes compared to mice, and this likely explains the lower efficacy in ferrets. Collectively, these findings indicate that while group 2 SI vaccines show promise, their immunogenicity and efficacy are reduced in larger outbred species, and will have to be enhanced for successful translation to a universal vaccine.

          Influenza: Developing a universal vaccine for influenza A group 2

          Progress has been made towards a universal vaccine targeting the ‘group 2’ subtype of influenza A virus. Today’s flu vaccines target the ‘head’ section of the virus’ hemagglutinin protein; however, this section acquires mutations which require the reformulation of vacccines. In this paper, a vaccine candidate designed to focus an immune response against the more stable protein ‘stem’ is described by a team of scientists led by Kanta Subbarao of the United States’ National Institutes of Health and Raghavan Varadarajan of the Indian Institute of Science. The candidate vaccine offered moderate protection to mice but did not provide significant antiviral effects when tested in ferrets. The authors suggest that, while their approach shows promise, improvement is needed before it could be translated into vaccines against human influenza infection.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

          Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins.

            The isolation of broadly neutralizing antibodies against influenza A viruses has been a long-sought goal for therapeutic approaches and vaccine design. Using a single-cell culture method for screening large numbers of human plasma cells, we isolated a neutralizing monoclonal antibody that recognized the hemagglutinin (HA) glycoprotein of all 16 subtypes and neutralized both group 1 and group 2 influenza A viruses. Passive transfer of this antibody conferred protection to mice and ferrets. Complexes with HAs from the group 1 H1 and the group 2 H3 subtypes analyzed by x-ray crystallography showed that the antibody bound to a conserved epitope in the F subdomain. This antibody may be used for passive protection and to inform vaccine design because of its broad specificity and neutralization potency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A highly conserved neutralizing epitope on group 2 influenza A viruses.

              Current flu vaccines provide only limited coverage against seasonal strains of influenza viruses. The identification of V(H)1-69 antibodies that broadly neutralize almost all influenza A group 1 viruses constituted a breakthrough in the influenza field. Here, we report the isolation and characterization of a human monoclonal antibody CR8020 with broad neutralizing activity against most group 2 viruses, including H3N2 and H7N7, which cause severe human infection. The crystal structure of Fab CR8020 with the 1968 pandemic H3 hemagglutinin (HA) reveals a highly conserved epitope in the HA stalk distinct from the epitope recognized by the V(H)1-69 group 1 antibodies. Thus, a cocktail of two antibodies may be sufficient to neutralize most influenza A subtypes and, hence, enable development of a universal flu vaccine and broad-spectrum antibody therapies.
                Bookmark

                Author and article information

                Affiliations
                [1 ]Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD USA
                [2 ]ISNI 0000 0001 0482 5067, GRID grid.34980.36, Molecular Biophysics Unit, Indian Institute of Science, ; Bangalore, Karnataka India
                [3 ]Comparative Medicine Branch, Infectious Disease Pathogenesis Section, NIAID, NIH, Bethesda, MD USA
                [4 ]GRID grid.483778.7, Present Address: WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute, ; 792 Elizabeth Street, Melbourne, VIC Australia
                Contributors
                +91-80-2293 2612 , varadar@mbu.iisc.ernet.in
                ORCID: http://orcid.org/0000-0003-1713-3056, +301-451-3839 , ksubbarao@niaid.nih.gov
                Journal
                NPJ Vaccines
                NPJ Vaccines
                NPJ Vaccines
                Nature Publishing Group UK (London )
                2059-0105
                15 December 2017
                15 December 2017
                2017
                : 2
                36
                10.1038/s41541-017-0036-2
                5732283
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article

                Similar content 7,415

                Cited by 7

                Most referenced authors 897