+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Icariin Alleviates IL-1β-Induced Matrix Degradation By Activating The Nrf2/ARE Pathway In Human Chondrocytes

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Osteoarthritis (OA) is characterized by progressive matrix destruction of articular cartilage. This study aimed to investigate the potential antioxidative and chondroprotective effects and underlying mechanism of Icariin (ICA) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage.


          Human chondrocyte cell line HC-A was treated with different doses of ICA, and then MTT assay and PI staining were used to estimate ICA-induced chondrocyte apoptosis. Intracellular ROS and superoxide dismutase (SOD) and glutathione peroxidase (GPX) were measured after treatment by IL-1β with or without ICA. The mRNA and protein expression levels of redox transcription factor Nrf2 and the downstream effector SOD-1, SOD-2, NQO-1 and HO-1 were assayed to explore the detailed mechanism by which ICA alleviates ECM degradation. Finally, to expound the role of Nrf2 in ICA-mediated chondroprotection, we specifically depleted Nrf2 in human chondrocytes and then pretreated them with ICA followed by IL-1β.


          ICA had no cytotoxic effects on human chondrocytes and 10 −9 M was selected as the optimum concentration. ROS induced by IL-1β could drastically activate matrix-degrading proteases and ICA could significantly rescue the matrix degradation and excess ROS generation caused by IL-1β. We observed that ICA activated the Nrf2/ARE pathway, consequently upregulating the generation of GPX and SOD. Ablation of Nrf2 abrogated the chondroprotective and antioxidative effects of ICA in IL-1β-treated chondrocytes.


          ICA alleviates IL-1β-induced matrix degradation and eliminates ROS by activating the Nrf2/ARE pathway.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          The IL-1 family: regulators of immunity.

          Over recent years it has become increasingly clear that innate immune responses can shape the adaptive immune response. Among the most potent molecules of the innate immune system are the interleukin-1 (IL-1) family members. These evolutionarily ancient cytokines are made by and act on innate immune cells to influence their survival and function. In addition, they act directly on lymphocytes to reinforce certain adaptive immune responses. This Review provides an overview of both the long-established and more recently characterized members of the IL-1 family. In addition to their effects on immune cells, their involvement in human disease and disease models is discussed.
            • Record: found
            • Abstract: found
            • Article: not found

            Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue.

            The dimethylmethylene blue assay for sulphated glycosaminoglycans has found wide acceptance as a quick and simple method of measuring the sulphated glycosaminoglycan content of tissues and fluids. The available assay methods have lacked specificity for sulphated glycosaminoglycans in the presence of other polyanions, however, and have not discriminated between the different sulphated glycosaminoglycans. We now describe a modified form of the dimethylmethylene blue assay that has improved specificity for sulphated glycosaminoglycans, and we show that in conjunction with specific polysaccharidases, the dimethylmethylene blue assay can be used to quantitate individual sulphated glycosaminoglycans.
              • Record: found
              • Abstract: found
              • Article: not found

              The role of cytokines in osteoarthritis pathophysiology.

              Morphological changes observed in OA include cartilage erosion as well as a variable degree of synovial inflammation. Current research attributes these changes to a complex network of biochemical factors, including proteolytic enzymes, that lead to a breakdown of the cartilage macromolecules. Cytokines such as IL-1 and TNF-alpha produced by activated synoviocytes, mononuclear cells or by articular cartilage itself significantly up-regulate metalloproteinases (MMP) gene expression. Cytokines also blunt chondrocyte compensatory synthesis pathways required to restore the integrity of the degraded extrecellular matrix (ECM). Moreover, in OA synovium, a relative deficit in the production of natural antagonists of the IL-1 receptor (IL-1Ra) has been demonstrated, and could possibly be related to an excess production of nitric oxide in OA tissues. This, coupled with an upregulation in the receptor level, has been shown to be an additional enhancer of the catabolic effect of IL-1 in this disease.IL-1 and TNF-alpha significantly up-regulate MMP-3 steady-state mRNA derived from human synovium and chondrocytes. The neutralization of IL-1 and/or TNF-alpha up-regulation of MMP gene expression appears to be a logical development in the potential medical therapy of OA. Indeed, recombinant IL-1receptor antagonists (ILRa) and soluble IL-1 receptor proteins have been tested in both animal models of OA for modification of OA progression. Soluble IL-1Ra suppressed MMP-3 transcription in the rabbit synovial cell line HIG-82. Experimental evidence showing that neutralizing TNF-alpha suppressed cartilage degradation in arthritis also support such strategy. The important role of TNF-alpha in OA may emerge from the fact that human articular chondrocytes from OA cartilage expressed a significantly higher number of the p55 TNF-alpha receptor which could make OA cartilage particularly susceptible to TNF-alpha degradative stimuli. In addition, OA cartilage produces more TNF-alpha and TNF anglealpha convertase enzyme (TACE) mRNA than normal cartilage. By analogy, an inhibitor to the p55 TNF-alpha receptor may also provide a mechanism for abolishing TNF-alpha-induced degradation of cartilage ECM by MMPs. Since TACE is the regulator of TNF-alpha activity, limiting the activity of TACE might also prove efficacious in OA. IL-1 and TNF-alpha inhibition of chondrocyte compensatory biosynthesis pathways which further compromise cartilage repair must also be dealt with, perhaps by employing stimulatory agents such as transforming growth factor-beta or insulin-like growth factor-I. Certain cytokines have antiinflammatory properties. Three such cytokines - IL-4, IL-10, and IL-13 - have been identified as able to modulate various inflammatory processes. Their antiinflammatory potential, however, appears to depend greatly on the target cell. Interleukin-4 (IL-4) has been tested in vitro in OA tissue and has been shown to suppress the synthesis of both TNF-alpha and IL-1beta in the same manner as low-dose dexamethasone. Naturally occurring antiinflammatory cytokines such as IL-10 inhibit the synthesis of IL-1 and TNF-alpha and can be potential targets for therapy in OA. Augmenting inhibitor production in situ by gene therapy or supplementing it by injecting the recombinant protein is an attractive therapeutic target, although an in vivo assay in OA is not available, and its applicability has yet to be proven. Similarly, IL-13 significantly inhibits lipopolysaccharide (LPS)-induced TNF-alpha production by mononuclear cells from peripheral blood, but not in cells from inflamed synovial fluid. IL-13 has important biological activities: inhibition of the production of a wide range of proinflammatory cytokines in monocytes/macrophages, B cells, natural killer cells and endothelial cells, while increasing IL-1Ra production. In OA synovial membranes treated with LPS, IL-13 inhibited the synthesis of IL-1beta, TNF-alpha and stromelysin, while increasing IL-1Ra production.In summary, modulation of cytokines that control MMP gene up-regulation would appear to be fertile targets for drug development in the treatment of OA. Several studies illustrate the potential importance of modulating IL-1 activity as a means to reduce the progression of the structural changes in OA. In the experimental dog and rabbit models of OA, we have demonstrated that in vivo intraarticular injections of the IL-Ra gene can prevent the progression of structural changes in OA. Future directions in the research and treatment of osteoarthritis (OA) will be based on the emerging picture of pathophysiological events that modulate the initiation and progression of OA.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                21 November 2019
                : 13
                : 3949-3961
                [1 ]Department of Hepatobiliary Surgery, The Hospital Affiliated to Guizhou Medical University , Guiyang, Guizhou, People’s Republic of China
                [2 ]Department of Sports Medicine, The Hospital Affiliated to Guizhou Medical University , Guiyang, Guizhou, People’s Republic of China
                [3 ]Department of Orthopedics, The Fourth People’s Hospital of Guiyang , Guizhou, People’s Republic of China
                [4 ]Department of Ultrasonography, The Maternity Hospital of Guizhou , Guiyang, Guizhou, People’s Republic of China
                [5 ]Department of Infectious Disease, The Hospital Affiliated to Guizhou Medical University , Guiyang, Guizhou, People’s Republic of China
                Author notes
                Correspondence: Hai-Yang Li Department of Hepatobiliary Surgery, The Hospital Affiliated to Guizhou Medical University , No.28, Guiyi Street, Guiyang, Guizhou550004, People’s Republic of China Email haiyangli666@sohu.com
                Jian-Nan Fan Department of Sports Medicine, The Hospital Affiliated to Guizhou Medical University , No.28, Guiyi Street, Guiyang, Guizhou550004, People’s Republic of China Email publetscientific@126.com

                These authors contributed equally to this work

                © 2019 Zuo et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 6, References: 54, Pages: 13
                Original Research


                Comment on this article