155
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A low mass for Mars from Jupiter's early gas-driven migration

      Preprint
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jupiter and Saturn formed in a few million years (Haisch et al. 2001) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ~100,000 years (Armitage 2007). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration (Masset & Snellgrove 2001, Morbidelli & Crida 2007, Pierens & Nelson 2008). The terrestrial planets finished accreting much later (Klein et al. 2009), and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (Wetherill 1978, Hansen 2009) (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets.

          The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Protoplanet Migration by Nebula Tides

            W WARD (1997)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The distribution of mass in the planetary system and solar nebula

                Bookmark

                Author and article information

                Journal
                24 January 2012
                Article
                10.1038/nature10201
                21642961
                1201.5177
                923f9a50-b9ac-42fd-96ee-ffbe71f64608

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature 475, 206-209 (14 July 2011)
                12 pages, 4 figures + Supplementary Material 46 pages, 10 figures
                astro-ph.EP

                Comments

                Comment on this article