10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cannabis in cancer care

      1 , 2
      Clinical Pharmacology & Therapeutics
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cannabis has been used in medicine for thousands of years prior to achieving its current illicit substance status. Cannabinoids, the active components of Cannabis sativa, mimic the effects of the endogenous cannabinoids (endocannabinoids), activating specific cannabinoid receptors, particularly CB1 found predominantly in the central nervous system and CB2 found predominantly in cells involved with immune function. Delta-9-tetrahydrocannabinol, the main bioactive cannabinoid in the plant, has been available as a prescription medication approved for treatment of cancer chemotherapy-induced nausea and vomiting and anorexia associated with the AIDS wasting syndrome. Cannabinoids may be of benefit in the treatment of cancer-related pain, possibly synergistic with opioid analgesics. Cannabinoids have been shown to be of benefit in the treatment of HIV-related peripheral neuropathy, suggesting that they may be worthy of study in patients with other neuropathic symptoms. Cannabinoids have a favorable drug safety profile, but their medical use is predominantly limited by their psychoactive effects and their limited bioavailability.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.

          Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials.

            Since the prevalence of obesity continues to increase, there is a demand for effective and safe anti-obesity agents that can produce and maintain weight loss and improve comorbidity. We did a meta-analysis of all published randomised controlled trials to assess the efficacy and safety of the newly approved anti-obesity agent rimonabant. We searched The Cochrane database and Controlled Trials Register, Medline via Pubmed, Embase via WebSpirs, Web of Science, Scopus, and reference lists up to July, 2007. We collected data from four double-blind, randomised controlled trials (including 4105 participants) that compared 20 mg per day rimonabant with placebo. Patients given rimonabant had a 4.7 kg (95% CI 4.1-5.3 kg; p<0.0001) greater weight reduction after 1 year than did those given placebo. Rimonabant caused significantly more adverse events than did placebo (OR=1.4; p=0.0007; number needed to harm=25 individuals [95% CI 17-58]), and 1.4 times more serious adverse events (OR=1.4; p=0.03; number needed to harm=59 [27-830]). Patients given rimonabant were 2.5 times more likely to discontinue the treatment because of depressive mood disorders than were those given placebo (OR=2.5; p=0.01; number needed to harm=49 [19-316]). Furthermore, anxiety caused more patients to discontinue treatment in rimonabant groups than in placebo groups (OR=3.0; p=0.03; number needed to harm=166 [47-3716]). Our findings suggest that 20 mg per day rimonabant increases the risk of psychiatric adverse events--ie, depressed mood disorders and anxiety-despite depressed mood being an exclusion criterion in these trials. Taken together with the recent US Food and Drug Administration finding of increased risk of suicide during treatment with rimonabant, we recommend increased alertness by physicians to these potentially severe psychiatric adverse reactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial.

              To determine the effect of smoked cannabis on the neuropathic pain of HIV-associated sensory neuropathy and an experimental pain model. Prospective randomized placebo-controlled trial conducted in the inpatient General Clinical Research Center between May 2003 and May 2005 involving adults with painful HIV-associated sensory neuropathy. Patients were randomly assigned to smoke either cannabis (3.56% tetrahydrocannabinol) or identical placebo cigarettes with the cannabinoids extracted three times daily for 5 days. Primary outcome measures included ratings of chronic pain and the percentage achieving >30% reduction in pain intensity. Acute analgesic and anti-hyperalgesic effects of smoked cannabis were assessed using a cutaneous heat stimulation procedure and the heat/capsaicin sensitization model. Fifty patients completed the entire trial. Smoked cannabis reduced daily pain by 34% (median reduction; IQR = -71, -16) vs 17% (IQR = -29, 8) with placebo (p = 0.03). Greater than 30% reduction in pain was reported by 52% in the cannabis group and by 24% in the placebo group (p = 0.04). The first cannabis cigarette reduced chronic pain by a median of 72% vs 15% with placebo (p < 0.001). Cannabis reduced experimentally induced hyperalgesia to both brush and von Frey hair stimuli (p < or = 0.05) but appeared to have little effect on the painfulness of noxious heat stimulation. No serious adverse events were reported. Smoked cannabis was well tolerated and effectively relieved chronic neuropathic pain from HIV-associated sensory neuropathy. The findings are comparable to oral drugs used for chronic neuropathic pain.
                Bookmark

                Author and article information

                Journal
                Clinical Pharmacology & Therapeutics
                Clin. Pharmacol. Ther.
                Wiley
                00099236
                June 2015
                June 2015
                April 17 2015
                : 97
                : 6
                : 575-586
                Affiliations
                [1 ]Hematology-Oncology, San Francisco General Hospital, Department of Medicine; University of California San Francisco; San Francisco California USA
                [2 ]Biochemistry and Molecular Biology, School of Biology; Complutense University, and Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
                Article
                10.1002/cpt.108
                25777363
                92496bba-d0cb-406b-9396-0043ac185c49
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article