+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Effect of Astroglia-like Mesenchymal Stem Cells Expressing Glutamate Transporter in a Genetic Rat Model of Depression

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Recent studies have proposed that abnormal glutamatergic neurotransmission and glial pathology play an important role in the etiology and manifestation of depression. It was postulated that restoration of normal glutamatergic transmission, by enhancing glutamate uptake, may have a beneficial effect on depression. We examined this hypothesis using unique human glial-like mesenchymal stem cells (MSCs), which in addition to inherent properties of migration to regions of injury and secretion of neurotrophic factors, were differentiated to express high levels of functional glutamate transporters (excitatory amino acid transporters; EAAT). Additionally, gold nanoparticles (GNPs), which serve as contrast agents for CT imaging, were loaded into the cells for non-invasive, real-time imaging and tracking of MSC migration and final location within the brain. MSC-EAAT (2×10 5; 10 μl) were administered (i.c.v.) to Flinder Sensitive Line rats (FSLs), a genetic model for depression, and longitudinal behavioral and molecular changes were monitored. FSL rats treated with MSC-EAAT showed attenuated depressive-like behaviors (measured by the forced swim test, novelty exploration test and sucrose self-administration paradigm), as compared to controls. CT imaging, Flame Atomic Absorption Spectroscopy analysis and immunohistochemistry showed that the majority of MSCs homed specifically to the dentate gyrus of the hippocampus, a region showing structural brain changes in depression, including loss of glial cells. mRNA and protein levels of EAAT1 and BDNF were significantly elevated in the hippocampus of MSC-EAAT-treated FSLs. Our findings indicate that MSC-EAATs effectively improve depressive-like manifestations, possibly in part by increasing both glutamate uptake and neurotropic factor secretion in the hippocampus.

          Related collections

          Most cited references 74

          • Record: found
          • Abstract: found
          • Article: not found

          Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.

          Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants or the molecular mechanisms that could account for the rapid responses. We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex neurons. The results demonstrate that acute treatment with the noncompetitive NMDA channel blocker ketamine or the selective NMDA receptor 2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonic and anxiogenic behaviors. We also found that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (excitatory postsynaptic currents) in layer V pyramidal neurons in the prefrontal cortex and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine. The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in a mammalian target of rapamycin dependent manner. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.

            The influence of chronic electroconvulsive seizure (ECS) or antidepressant drug treatments on expression of brain-derived neurotrophic factor (BDNF) and its receptor, trkB, was examined by in situ hybridization and Northern blot. In frontal cortex, acute ECS increased BDNF mRNA approximately twofold, an effect significantly augmented by a prior course of chronic ECS treatment (10 d). In the hippocampus, the influence of chronic ECS varied between the major subfields. In the dentate gyrus granule cell layer, chronic ECS decreased the acute induction of BDNF and trkB mRNA by approximately 50%, but prolonged their expression: levels remained elevated two- to threefold 18 hr later after the last chronic ECS treatment, but returned to control 18 hr after acute ECS. In CA3 and CA1 pyramidal cell layers, chronic ECS significantly elevated the acute induction of BDNF, and tended to prolong the expression of BDNF and trkB mRNA. A similar effect was observed in layer 2 of the piriform cortex, where chronic ECS significantly increased the acute induction and prolonged the expression of BDNF and trkB mRNA. Chronic (21 d), but not acute (1 d), administration of several different antidepressant drugs, including tranylcypromine, sertraline, desipramine, or mianserin, significantly increased BDNF mRNA and all but mianserin increased trkB mRNA in hippocampus. In contrast, chronic administration of nonantidepressant psychotropic drugs, including morphine, cocaine, or haloperidol, did not increase levels of BDNF mRNA. Furthermore, chronic administration of ECS or antidepressant drugs completely blocked the down-regulation of BDNF mRNA in the hippocampus in response to restraint stress. The enhanced induction and prolonged expression of BDNF in response to chronic ECS and antidepressant drug treatments could promote neuronal survival, and protect neurons from the damaging effects of stress.
              • Record: found
              • Abstract: found
              • Article: not found

              Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors.

              Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.

                Author and article information

                Ivyspring International Publisher (Sydney )
                6 July 2017
                : 7
                : 10
                : 2690-2703
                [1 ]The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel;
                [2 ]Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel;
                [3 ]Leslie Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel;
                [4 ]Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA 48202.
                Author notes
                ✉ Corresponding authors: Prof. Gal Yadid, The Mina & Everard Goodman Faculty of Life Sciences, Leslie Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center; Bar-Ilan University, Ramat-Gan 5290002, Israel Tel: 972-3-5318123 E-mail: yadidg@ 123456gmail.com Chaya Brodie, The Mina & Everard Goodman Faculty of Life Sciences, Leslie Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center; Bar-Ilan University, Ramat-Gan 5290002, Israel Email: chaya@ 123456brodienet.com

                Competing Interests: The authors have declared that no competing interest exists.

                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                Research Paper

                Molecular medicine


                Comment on this article