20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is the most common form of primary adult liver cancer. After nearly a decade with sorafenib as the only approved treatment, multiple new agents have demonstrated efficacy in clinical trials, including the targeted therapies regorafenib, lenvatinib and cabozantinib, the anti-angiogenic antibody ramucirumab, and the immune checkpoint inhibitors nivolumab and pembrolizumab. Although these agents offer new promise to patients with HCC, the optimal choice and sequence of therapies remains unknown and without established biomarkers, and many patients do not respond to treatment. The advances and the decreasing costs of molecular measurement technologies enable profiling of HCC molecular features (such as genome, transcriptome, proteome and metabolome) at different levels, including bulk tissues, animal models and single cells. The release of such data sets to the public enhances the ability to search for information from these legacy studies and provides the opportunity to leverage them to understand HCC mechanisms, rationally develop new therapeutics and identify candidate biomarkers of treatment response. Here, we provide a comprehensive review of public data sets related to HCC and discuss how emerging artificial intelligence methods can be applied to identify new targets and drugs as well as to guide therapeutic choices for improved HCC treatment.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma

            (2017)
            Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole exome sequencing and DNA copy number analyses, and 196 HCC also by DNA methylation, RNA, miRNA, and proteomic expression. DNA sequencing and mutation analysis identified significantly mutated genes including LZTR1 , EEF1A1 , SF3B1 , and SMARCA4 . Significant alterations by mutation or down-regulation by hypermethylation in genes likely to result in HCC metabolic reprogramming ( ALB , APOB , and CPS1 ) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1. Multiplex molecular profiling of human hepatocellular carcinoma patients provides insight into subtype characteristics and points toward key pathways to target therapeutically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma.

              Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/β-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Gastroenterology & Hepatology
                Nat Rev Gastroenterol Hepatol
                Springer Science and Business Media LLC
                1759-5045
                1759-5053
                January 3 2020
                Article
                10.1038/s41575-019-0240-9
                7401304
                31900465
                92624afe-c286-4555-a8be-209a9fdecbe5
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article