9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences

      Paleobiology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In both jaw geometry and molar morphology, eutherian carnivores (order Carnivora) as a whole display greater diversity (plasticity in evolution from the primitive type) than marsupial carnivores (order Dasyurida). This is related to the difference in tooth replacement between the two taxa. In Carnivora, the permanent carnassial is preceded by a deciduous carnassial; the permanent tooth can erupt in its (geometrically) permanent position, and the post-carnassial molars are free to evolve for specialized functions or be reduced. In Dasyurida, there is relative molar progression, each erupting molar in turn functioning as a carnassial, and subsequently being pushed forwards in the jaw by the next erupting molar. Thus, all molars have carnassiform morphology, and none are free to develop for other functions. The greater plasticity of Carnivora has led to their adaptive zone being broader (as a group they are relatively more eurytopic than Dasyurida), which in turn has led to greater taxonomic diversity within Carnivora than Dasyurida. The resulting pattern from a macroevolutionary point of view is that, even in the absence of direct competition, Carnivora have had greater evolutionary “success” than Dasyurida.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Toward a Phylogenetic Classification of the Mammalia

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian evolution and the great american interchange.

            A reciprocal and apparently symmetrical interchange of land mammals between North and South America began about 3 million years ago, after the appearance of the Panamanian land bridge. The number of families of land mammals in South America rose from 32 before the interchange to 39 after it began, and then back to 35 at present. An equivalent number of families experienced a comparable rise and decline in North America during the same interval. These changes in diversity are predicted by the MacArthur-Wilson species equilibrium theory. The greater number of North American genera (24) initially entering South America than the reverse (12) is predicted by the proportions of reservoir genera on the two continents. However, a later imbalance caused by secondary immigrants (those which evolved from initial immigrants) is not expected from equilibrium theory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A theory of evolution above the species level.

              Gradual evolutionary change by natural selection operates so slowly within established species that it cannot account for the major features of evolution. Evolutionary change tends to be concentrated within speciation events. The direction of transpecific evolution is determined by the process of species selection, which is analogous to natural selection but acts upon species within higher taxa rather than upon individuals within populations. Species selection operates on variation provided by the largely random process of speciation and favors species that speciate at high rates or survive for long periods and therefore tend to leave many daughter species. Rates of speciation can be estimated for living taxa by means of the equation for exponential increase, and are clearly higher for mammals than for bivalve mollusks.
                Bookmark

                Author and article information

                Journal
                applab
                Paleobiology
                Paleobiology
                Cambridge University Press (CUP)
                0094-8373
                1938-5331
                1987
                April 2016
                : 13
                : 03
                : 342-350
                Article
                10.1017/S0094837300008915
                926b89cf-9f5d-47dc-be5f-b0d5d53750b7
                © 1987

                Comments

                Comment on this article