13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population-based analysis of the frequency of HFE gene polymorphisms: Correlation with the susceptibility to develop hereditary hemochromatosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hereditary hemochromatosis (HH) is an autosomal recessive genetic disease, characterized by increased dietary iron absorption. Due to the absence of an effective excretory mechanism, the excess iron in the body may accumulate resulting in toxic effects. The HFE gene also affects the activity of hepcidin, a hormone which acts as a negative regulator of iron metabolism. In this study, we performed a population-based analysis of the distribution of three hemochromatosis-related polymorphisms in the HFE gene (rs1800562, rs1799945 and rs1800730). DNA from 1,446 non-related individuals of Greek ethnicity was collected and analyzed, either from whole blood or buccal swabs. The frequency distribution of these HFE gene polymorphisms was then determined. The results revealed that in our Greek population cohort (gr) the frequencies of each polymorphism were as follows: rs1800562: GG (wild-type)=97.0%, GA=1.5%, AA=1.5%; rs1799945: CC (wild-type)=74.4%, CG=23.4%, GG=2.2%; rs1800730: AA (wild-type)=98.1%, AT=1.5% and TT=0.4%. No association between the HFE polymorphisms rs1800562, rs1799945 and rs1800730 and gender could be established. As regards the rs1800562 polymorphism, the A allele (mutant) was ~1.8-fold more frequent in the European population (eur) than in the Greek population [(gr)=2,3%<(eur)=4%]. As for the rs1799945 polymorphism, the G allele (mutant) was 1.2-fold more frequent in the European population than in the Greek population [(gr)=13,9%<(eur)=17%]. As regards the rs1800730 polymorphism, the T allele (mutant) was ~1.7-fold more frequent in the European population than in the Greek population [(gr)=1.2%<(eur)=2%]. However, these pathogenic mutations were found more frequently in the Greek population compared to the global population (gl) [rs1800562: (gl)=1%<(gr)=2,3%; rs1799945: (gl)=7%<(gr)=13,9%; rs1800730: (gl)=<1%<(gr)=1.2%]. This suggests that the Greek population may differ genetically from the northern European population, due to influences from neighboring Asian and African populations. These findings also suggest that there is no gender-associated inheritance of these polymorphisms, and gender-specific symptoms appear as a result of independent biological processes. Thus, the early detection of the tendency towards iron accumulation may be achieved by the genotypic analysis of the polymorphisms that may contribute to the development of the hemochromatosis.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          A note on exact tests of Hardy-Weinberg equilibrium.

          Deviations from Hardy-Weinberg equilibrium (HWE) can indicate inbreeding, population stratification, and even problems in genotyping. In samples of affected individuals, these deviations can also provide evidence for association. Tests of HWE are commonly performed using a simple chi2 goodness-of-fit test. We show that this chi2 test can have inflated type I error rates, even in relatively large samples (e.g., samples of 1,000 individuals that include approximately 100 copies of the minor allele). On the basis of previous work, we describe exact tests of HWE together with efficient computational methods for their implementation. Our methods adequately control type I error in large and small samples and are computationally efficient. They have been implemented in freely available code that will be useful for quality assessment of genotype data and for the detection of genetic association or population stratification in very large data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron, oxidative stress and human health.

            The amount of iron within the cell is carefully regulated in order to provide an adequate level of the micronutrient while preventing its accumulation to toxic levels. Iron excess is believed to generate oxidative stress, understood as an increase in the steady state concentration of oxygen radical intermediates. The main aspects of cellular metabolism of iron, with special emphasis on the role of iron with respect to oxidative damage to lipid membranes, are briefly reviewed here. Both in vitro and in vivo models are examined. Finally, a discussion of iron overload and its impact on human health is included. Overall, further studies are required to assess more effective means to limit iron-dependent damage, by minimizing the formation and release of free radicals in tissues when the cellular iron steady state concentration is increased either as a consequence of disease or by therapeutic iron supplementation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology.

              Hereditary hemochromatosis (HHC) is an autosomal recessive disorder of iron metabolism characterized by increased iron absorption and deposition in the liver, pancreas, heart, joints, and pituitary gland. Without treatment, death may occur from cirrhosis, primary liver cancer, diabetes, or cardiomyopathy. In 1996, HFE, the gene for HHC, was mapped on the short arm of chromosome 6 (6p21.3). Two of the 37 allelic variants of HFE described to date (C282Y and H63D) are significantly correlated with HHC. Homozygosity for the C282Y mutation was found in 52-100% of previous studies on clinically diagnosed probands. In this review, 5% of HHC probands were found to be compound heterozygotes (C282Y/H63D), and 1.5% were homozygous for the H63D mutation; 3.6% were C282Y heterozygotes, and 5.2% were H63D heterozygotes. In 7% of cases, C282Y and H63D mutations were not present. In the general population, the frequency of the C282Y/C282Y genotype is 0.4%. C282Y heterozygosity ranges from 9.2% in Europeans to nil in Asian, Indian subcontinent, African/Middle Eastern, and Australasian populations. The H63D carrier frequency is 22% in European populations. Accurate data on the penetrance of the different HFE genotypes are not available. Extrapolating from limited clinical observations in screening studies, an estimated 40--70% of persons with the C282Y homozygous genotype will develop clinical evidence of iron overload. A smaller proportion will die from complications of iron overload. To date, population screening for HHC is not recommended because of uncertainties about optimal screening strategies, optimal care for susceptible persons, laboratory standardization, and the potential for stigmatization or discrimination.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                July 2016
                20 May 2016
                20 May 2016
                : 14
                : 1
                : 630-636
                Affiliations
                [1 ]Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 157 71, Greece
                [2 ]Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
                [3 ]Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71409, Greece
                Author notes
                Correspondence to: Dr Nikolaos Drakoulis, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens 157 71, Greece, E-mail: drakoulis@ 123456pharm.uoa.gr
                Article
                mmr-14-01-0630
                10.3892/mmr.2016.5317
                4918619
                27221532
                92724a93-da14-48f3-a3d7-a9e95b804b34
                Copyright: © Katsarou et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 22 March 2016
                : 10 May 2016
                Categories
                Articles

                hereditary hemochromatosis,hfe gene,iron metabolism,polymorphism,hepcidin

                Comments

                Comment on this article