112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Basis of Macrolide Resistance in Campylobacter Strains Isolated from Poultry in South Korea

      research-article
      ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the molecular mechanisms underlying macrolide resistance in 38 strains of Campylobacter isolated from poultry. Twenty-seven strains were resistant to azithromycin and erythromycin, five showed intermediate azithromycin resistance and erythromycin susceptibility, and six showed azithromycin resistance and erythromycin susceptibility. Four Campylobacter jejuni and six Campylobacter coli strains had azithromycin MICs which were 8–16 and 2–8-fold greater than those of erythromycin, respectively. The A2075G mutation in the 23S rRNA gene was detected in 11 resistant strains with MICs ranging from 64 to ≥ 512 μg/mL. Mutations including V137A, V137S, and a six-amino acid insertion (114-VAKKAP-115) in ribosomal protein L22 were detected in the C. jejuni strains. Erythromycin ribosome methylase B- erm(B) was not detected in any strain. All strains except three showed increased susceptibility to erythromycin with twofold to 256-fold MIC change in the presence of phenylalanine arginine ß-naphthylamide (PAßN); the effects of PAßN on azithromycin MICs were limited in comparison to those on erythromycin MICs, and 13 strains showed no azithromycin MIC change in the presence of PAßN. Differences between azithromycin and erythromycin resistance and macrolide resistance phenotypes and genotypes were observed even in highly resistant strains. Further studies are required to better understand macrolide resistance in Campylobacter.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotic resistance in Campylobacter: emergence, transmission and persistence.

          Campylobacter is a leading foodborne bacterial pathogen, which causes gastroenteritis in humans. This pathogenic organism is increasingly resistant to antibiotics, especially fluoroquinolones and macrolides, which are the most frequently used antimicrobials for the treatment of campylobacteriosis when clinical therapy is warranted. As a zoonotic pathogen, Campylobacter has a broad animal reservoir and infects humans via contaminated food, water or milk. Antibiotic usage in both animal agriculture and human medicine, can influence the development of antibiotic-resistant Campylobacter. This review will describe the trend in fluoroquinolone and macrolide resistance in Campylobacter, summarize the mechanisms underlying the resistance to various antibiotics and discuss the unique features associated with the emergence, transmission and persistence of antibiotic-resistant Campylobacter. Special attention will be given to recent findings and emphasis will be placed on Campylobacter resistance to fluoroquinolones and macrolides. A future perspective on antibiotic resistance and potential approaches for the control of antibiotic-resistant Campylobacter, will also be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

            The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistance to Macrolide Antibiotics in Public Health Pathogens.

              Macrolide resistance mechanisms can be target-based with a change in a 23S ribosomal RNA (rRNA) residue or a mutation in ribosomal protein L4 or L22 affecting the ribosome's interaction with the antibiotic. Alternatively, mono- or dimethylation of A2058 in domain V of the 23S rRNA by an acquired rRNA methyltransferase, the product of an erm (erythromycin ribosome methylation) gene, can interfere with antibiotic binding. Acquired genes encoding efflux pumps, most predominantly mef(A) + msr(D) in pneumococci/streptococci and msr(A/B) in staphylococci, also mediate resistance. Drug-inactivating mechanisms include phosphorylation of the 2'-hydroxyl of the amino sugar found at position C5 by phosphotransferases and hydrolysis of the macrocyclic lactone by esterases. These acquired genes are regulated by either translation or transcription attenuation, largely because cells are less fit when these genes, especially the rRNA methyltransferases, are highly induced or constitutively expressed. The induction of gene expression is cleverly tied to the mechanism of action of macrolides, relying on antibiotic-bound ribosomes stalled at specific sequences of nascent polypeptides to promote transcription or translation of downstream sequences.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                5 July 2018
                : 2018
                : 4526576
                Affiliations
                Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, Jeonju, Republic of Korea
                Author notes

                Academic Editor: María de Guía Córdoba

                Author information
                http://orcid.org/0000-0003-1169-2500
                http://orcid.org/0000-0001-5650-1144
                Article
                10.1155/2018/4526576
                6057423
                30069469
                9272c22d-79f7-4f32-ba6e-5d2e6bdeea62
                Copyright © 2018 Bai Wei and Min Kang.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 March 2018
                : 19 June 2018
                Funding
                Funded by: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries
                Award ID: 716002-7
                Award ID: 315035-5
                Funded by: NRF
                Award ID: 2017R1D1A1B03030883
                Funded by: Research of Animal and Plant Quarantine Agency
                Award ID: Z-1543073-2015-16-01
                Categories
                Research Article

                Comments

                Comment on this article