6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rat strain differences in nicotine self-administration using an unlimited access paradigm.

      Brain Research
      Animals, Cholinergic Agents, pharmacology, Conditioning, Operant, drug effects, Dose-Response Relationship, Drug, Male, Nicotine, Rats, Rats, Inbred F344, Rats, Inbred Lew, Reinforcement Schedule, Self Administration, Species Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An effective animal model for elucidating the neurobiological basis of human smoking should simulate important aspects of this behavior. Therefore, a 23 h unlimited access nicotine self-administration model was used to compare inbred Lewis rats, which have a propensity to self-administer drugs of abuse, to inbred Fisher 344 rats and to the outbred Holtzman strain. Using this unlimited access model, 88.8% of Lewis vs. 57.1% of Holtzman rats achieved maintenance self-administration at a fixed ratio 1 (FR 1) at 0.03 mg/kg IV nicotine (P<0.05). In contrast, Fisher rats did not acquire self-administration under these conditions. Of the Lewis and Holtzman rats that achieved maintenance self-administration on an FR 1 schedule, a greater percentage of Lewis rats acquired nicotine self-administration at FR 2 (P<0.05) and progressed to FR 4 (P<0.05). Using naïve cohorts in a progressive dose reduction study, 83.3% of Lewis rats achieved maintenance at 0.0075 mg/kg nicotine as compared to 31.8% of Holtzman rats (P<0.05). Furthermore, only Lewis rats showed differences in active vs. inactive bar presses during maintenance at sequential dose reductions (P<0.001). Thus, in this unlimited access model, inbred Lewis rats will more reliably acquire nicotine self-administration than outbred Holtzman rats. Moreover, Lewis rats showed a significantly higher likelihood of continuing to self-administer nicotine in face of both increasing work requirements and decreasing drug reinforcement. Therefore, it is likely that Lewis rats would be genetically susceptible to nicotine addiction.

          Related collections

          Author and article information

          Comments

          Comment on this article