0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Characterization of the B-cell receptor repertoires in peanut allergic subjects undergoing oral immunotherapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          B-cell receptors (BCRs) play a critical role in adaptive immunity as they generate highly diverse immunoglobulin repertoires to recognize a wide variety of antigens. To better understand immune responses, it is critically important to establish a quantitative and rapid method to analyze BCR repertoire comprehensively. Here, we developed "Bcrip", a novel approach to characterize BCR repertoire by sequencing millions of BCR cDNA using next-generation sequencer. Using this method and quantitative real-time PCR, we analyzed expression levels and repertoires of BCRs in a total of 17 peanut allergic subjects' peripheral blood samples before and after receiving oral immunotherapy (OIT) or placebo. By our methods, we successfully identified all of variable (V), joining (J), and constant (C) regions, in an average of 79.1% of total reads and 99.6% of these VJC-mapped reads contained the C region corresponding to the isotypes that we aimed to analyze. In the 17 peanut allergic subjects' peripheral blood samples, we observed an oligoclonal enrichment of certain immunoglobulin heavy chain alpha (IGHA) and IGH gamma (IGHG) clones (P = 0.034 and P = 0.027, respectively) in peanut allergic subjects after OIT. This newly developed BCR sequencing and analysis method can be applied to investigate B-cell repertoires in various research areas, including food allergies as well as autoimmune and infectious diseases.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Somatic generation of antibody diversity.

          In the genome of a germ-line cell, the genetic information for an immunoglobulin polypeptide chain is contained in multiple gene segments scattered along a chromosome. During the development of bone marrow-derived lymphocytes, these gene segments are assembled by recombination which leads to the formation of a complete gene. In addition, mutations are somatically introduced at a high rate into the amino-terminal region. Both somatic recombination and mutation contribute greatly to an increase in the diversity of antibody synthesized by a single organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Counting absolute numbers of molecules using unique molecular identifiers.

            Counting individual RNA or DNA molecules is difficult because they are hard to copy quantitatively for detection. To overcome this limitation, we applied unique molecular identifiers (UMIs), which make each molecule in a population distinct, to genome-scale human karyotyping and mRNA sequencing in Drosophila melanogaster. Use of this method can improve accuracy of almost any next-generation sequencing method, including chromatin immunoprecipitation-sequencing, genome assembly, diagnostics and manufacturing-process control and monitoring.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              V(D)J recombination: mechanisms of initiation.

              V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we discuss recent advances in our understanding of the function and domain organization of the RAG proteins, the composition and structure of RAG-DNA complexes, and the pathways that lead to the formation of these complexes. We also consider the functional significance of RAG-mediated histone recognition and ubiquitin ligase activities, and the role played by RAG in ensuring proper repair of DNA breaks made during V(D)J recombination. Finally, we propose a model for the formation of RAG-DNA complexes that involves anchoring of RAG1 at the recombination signal nonamer and RAG2-dependent surveillance of adjoining DNA for suitable spacer and heptamer sequences.
                Bookmark

                Author and article information

                Journal
                Journal of Human Genetics
                J Hum Genet
                Springer Nature
                1434-5161
                1435-232X
                November 2017
                :
                :
                Article
                10.1038/s10038-017-0364-0
                29192240
                9274c18b-a6e6-499b-b7a7-1654e80dbb25
                History

                Comments

                Comment on this article