18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      cGMP and cAMP cause pulmonary vasoconstriction in the presence of hemolysate.

      Journal of Applied Physiology
      Animals, Blood Pressure, drug effects, Calcium, pharmacology, Carbon Monoxide, Cyclic AMP, Cyclic GMP, Erythrocytes, physiology, Hemolysis, In Vitro Techniques, Nitric Oxide, Phosphorylation, Proteins, metabolism, Pulmonary Circulation, Rats, Rats, Sprague-Dawley, Vasoconstriction

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We recently reported that addition of a small amount of hemolysate to the salt solution that perfused isolated rat lungs hypersensitized the vasculature to subsequent additions of ANG II or exposure to hypoxia, and addition of NO gas (. NO) to the perfusate that contained hemolysate caused a strong vasoconstrictor rather than a vasodilator response. In the present study, we demonstrate that CO and the secondary messengers cGMP and cAMP (usually associated with vasodilation) exert similar effects in hemolysate-perfused lungs. Analogs of the cyclic nucleotides cGMP or cAMP (8-bromo-cGMP and dibutyryl-cAMP, respectively) caused profound vasoconstriction in the isolated rat lung perfused with a salt solution that contained hemolysate. The cGMP- or cAMP-analog-induced vasoconstriction was inhibited by chemically dissimilar Ca2+ antagonists, by the protein phosphatase inhibitor okadaic acid, and, to a lesser degree, by protein kinase inhibitor H-7. Antiphosphothreonine immunoblotting demonstrated that lungs perfused with hemolysate exhibit increased phosphorylation of several proteins. These data indicate that, in the presence of hemolysate, pulmonary vasculature responds to nominally vasodilatory stimuli, including analogs of cGMP and cAMP, with vasoconstriction rather than vasodilation. The importance of our finding is the paradoxical nature of the response to (analogs of) cyclic nucleotides because, to our knowledge, cyclic nucleotide-induced vasoconstriction has not been previously reported.

          Related collections

          Author and article information

          Comments

          Comment on this article