21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mucoadhesion is an important property that helps oral drug delivery system to remain attached with buccal mucosa and hence to improve the delivery of the drug. The current study was designed to achieve the thiol modification of Arabinoxylan (ARX) and to develop a mucoadhesive oral film for the improved delivery of tizanidine hydrochloride (TZN HCl).

          Method

          Synthesis of thiolated arabinoxylan (TARX) was accomplished by esterification of ARX with thioglycolic acid (TGA). TARX was further used for the development of mucoadhesive oral films which were prepared by using a solvent casting technique. Formulation of the films was designed and optimized by using central composite design (CCRD), selecting TARX (X 1) and glycerol (X 2) as variables. Prepared film formulations were evaluated for mechanical strength, ex-vivo mucoadhesion, in-vitro drug release, ex-vivo drug permeation, surface morphology and drug contents.

          Results

          Thiolation of ARX was confirmed by fourier transform infra-red spectroscopy (FTIR) as a peak related to thiol group appeared at 2516 cm −1. The claim of successful thiolation of ARX was strengthened by the presence of 2809.003 ± 1.03 μmoles of thiol contents per gram of the polymer, which was determined by Ellman’s reagent method. From the results, it was observed that the films were of satisfactory mechanical strength and mucoadhesiveness with folding endurance greater than 300 and mucoadhesive strength 11.53 ± 0.17 N, respectively. Reasonable drug retention was observed during in-vitro dissolution (85.03% cumulative drug release) and ex-vivo permeation (78.90% cumulative amount of permeated drug) studies conducted for 8 h. Effects of varying concentrations of both polymer and plasticizer on prepared mucoadhesive oral films were evaluated by ANOVA and it was observed that glycerol can enhanced the dissolution as well as permeation of the drug while TARX has opposite impact on these parameters.

          Conclusion

          In nutshell, TARX in combination with glycerolwas found to be suitable for the development of controlled release mucoadhesive oral films of TZN HCl.

          Graphical Abstract

          Schematic diagram showing conversion of ARX to TARX, TARX to oral film and evaluation of fabricated oral film

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Preactivated thiomers as mucoadhesive polymers for drug delivery

          This study was aimed to synthesize polymeric excipients with improved mucoadhesive, cohesive and in situ-gelling properties to assure a prolonged retention time of dosage forms at a given target site, thereby achieving an increased uptake and improved oral bioavailability of certain challenging therapeutic agents such as peptides and proteins. Accordingly, poly(acrylic acid)-cysteine-2-mercaptonicotinic acid (PAA-cys-2MNA) conjugates were synthesized by the oxidative S–S coupling of PAA-cys (100-, 250- and 450 kDa) with 2-mercaptonicotinic acid (2MNA). Unmodified PAAs, PAAs-cys (thiomers) and PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates were compressed into tablets to perform disintegration tests, mucoadhesion studies and rheological measurements. Moreover, cytotoxicty of the polymers was determined using Caco-2 cells. The resulting PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates displayed 113.5 ± 12.7, 122.7 ± 12.2 and 117.3 ± 4.6 μmol/g of 2-mercaptonicotinic acid, respectively. Due to the immobilization of 2MNA, the PAA-cys-2MNA (pre-activated thiomers) conjugates exhibit comparatively higher swelling properties and disintegration time to the corresponding unmodified and thiolated polymers. On the rotating cylinder, tablets based on PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates displayed 5.0-, 5.4- and 960-fold improved mucoadhesion time in comparison to the corresponding unmodified PAAs. Results achieved from tensile studies were found in good agreement with the results obtained by rotating cylinder method. The apparent viscosity of PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates was improved 1.6-, 2.5- and 206.2-fold, respectively, in comparison to the corresponding unmodified PAAs. Moreover, pre-activated thiomers/mucin mixtures showed a time dependent increase in viscosity up to 24 h, leading to 7.0-, 18.9- and 2678-fold increased viscosity in comparison to unmodified PAAs (100-, 250- and 450 kDa), respectively. All polymers were found non-toxic over Caco-2 cells. Thus, on the basis of achieved results the pre-activated thiomers seem to represent a promising generation of mucoadhesive polymers which are safe to use for prolonged residence time of drug delivery systems to target various mucosa.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Thiolated pectin: Synthesis, characterization and evaluation as a mucoadhesive polymer

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Glycerol and urea can be used to increase skin permeability in reduced hydration conditions.

              The natural moisturizing factor (NMF) is a group of hygroscopic molecules that is naturally present in skin and protects from severe drying. Glycerol and urea are two examples of NMF components that are also used in skin care applications. In the present study, we investigate the influence of glycerol and urea on the permeability of a model drug (metronidazole, Mz) across excised pig skin membranes at different hydrating conditions. The degree of skin hydration is regulated by the gradient in water activity across the membrane, which in turn depends on the water activity of the formulation in contact with the skin membrane. Here, we determine the water activity of all formulations employed using an isothermal calorimetric method. Thus, the gradient in water activity is controlled by a novel experimental set-up with well-defined boundary conditions on both sides of the skin membrane. The results demonstrate that glycerol and urea can retain high steady state flux of Mz across skin membranes at dehydrating conditions, which otherwise would decrease the permeability due to dehydration. X-ray diffraction measurements are performed to give insight into the effects of glycerol and urea on SC molecular organization. The novel steady state flux results can be related to the observation that water, glycerol, and urea all affect the structural features of the SC molecular components in a similar manner.
                Bookmark

                Author and article information

                Contributors
                muhammadhanif14@yahoo.com
                0092-300-6095928 , m.zaman2157@gmail.com
                Journal
                Daru
                Daru
                DARU Journal of Pharmaceutical Sciences
                BioMed Central (London )
                1560-8115
                2008-2231
                20 March 2017
                20 March 2017
                2017
                : 25
                : 6
                Affiliations
                ISNI 0000 0001 0228 333X, GRID grid.411501.0, Department of Pharmacy, , Bahauddin Zakariya University, ; Multan, 60800 Pakistan
                Article
                172
                10.1186/s40199-017-0172-2
                5359919
                927a3618-7705-4ecc-96aa-1fd230e0f75a
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 February 2017
                : 28 February 2017
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2017

                Pharmacology & Pharmaceutical medicine
                arabinoxylan,thiolation,thiol contents,ex-vivo mucoadhesion,ex-vivo permeation,drug release

                Comments

                Comment on this article