4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spinal cord repair strategies: why do they work?

      Nature reviews. Neuroscience
      Animals, Humans, Nerve Regeneration, physiology, Neuronal Plasticity, Spinal Cord, cytology, Spinal Cord Injuries, physiopathology, therapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are now numerous preclinical reports of various experimental treatments promoting some functional recovery after spinal cord injury. Surprisingly, perhaps, the mechanisms that underlie recovery have rarely been definitively established. Here, we critically evaluate the evidence that regeneration of damaged pathways or compensatory collateral sprouting can promote recovery. We also discuss several more speculative mechanisms that might putatively explain or confound some of the reported outcomes of experimental interventions.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein.

          Adult mammalian axon regeneration is generally successful in the peripheral nervous system (PNS) but is dismally poor in the central nervous system (CNS). However, many classes of CNS axons can extend for long distances in peripheral nerve grafts. A comparison of myelin from the CNS and the PNS has revealed that CNS white matter is selectively inhibitory for axonal outgrowth. Several components of CNS white matter, NI35, NI250(Nogo) and MAG, that have inhibitory activity for axon extension have been described. The IN-1 antibody, which recognizes NI35 and NI250(Nogo), allows moderate degrees of axonal regeneration and functional recovery after spinal cord injury. Here we identify Nogo as a member of the Reticulon family, Reticulon 4-A. Nogo is expressed by oligodendrocytes but not by Schwann cells, and associates primarily with the endoplasmic reticulum. A 66-residue lumenal/extracellular domain inhibits axonal extension and collapses dorsal root ganglion growth cones. In contrast to Nogo, Reticulon 1 and 3 are not expressed by oligodendrocytes, and the 66-residue lumenal/extracellular domains from Reticulon 1, 2 and 3 do not inhibit axonal regeneration. These data provide a molecular basis to assess the contribution of Nogo to the failure of axonal regeneration in the adult CNS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal and glial apoptosis after traumatic spinal cord injury.

            Cell death was examined by studying the spinal cords of rats subjected to traumatic insults of mild to moderate severity. Within minutes after mild weight drop impact (a 10 gm weight falling 6.25 mm), neurons in the immediate impact area showed a loss of cytoplasmic Nissl substances. Over the next 7 d, this lesion area expanded and cavitated. Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-positive neurons were noted primarily restricted to the gross lesion area 4-24 hr after injury, with a maximum presence at 8 hr after injury. TUNEL-positive glia were present at all stages studied between 4 hr and 14 d, with a maximum presence within the lesion area 24 hr after injury. However 7 d after injury, a second wave of TUNEL-positive glial cells was noted in the white matter peripheral to the lesion and extending at least several millimeters away from the lesion center. The suggestion of apoptosis was supported by electron microscopy, as well as by nuclear staining with Hoechst 33342 dye, and by examination of DNA prepared from the lesion site. Furthermore, repeated intraperitoneal injections of cycloheximide, beginning immediately after a 12.5 mm weight drop insult, produced a substantial reduction in histological evidence of cord damage and in motor dysfunction assessed 4 weeks later. Present data support the hypothesis that apoptosis dependent on active protein synthesis contributes to the neuronal and glial cell death, as well as to the neurological dysfunction, induced by mild-to-moderate severity traumatic insults to the rat spinal cord.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome.

              Several studies have reported functional improvement after transplantation of neural stem cells into injured spinal cord. We now provide evidence that grafting of adult neural stem cells into a rat thoracic spinal cord weight-drop injury improves motor recovery but also causes aberrant axonal sprouting associated with allodynia-like hypersensitivity of forepaws. Transduction of neural stem cells with neurogenin-2 before transplantation suppressed astrocytic differentiation of engrafted cells and prevented graft-induced sprouting and allodynia. Transduction with neurogenin-2 also improved the positive effects of engrafted stem cells, including increased amounts of myelin in the injured area, recovery of hindlimb locomotor function and hindlimb sensory responses, as determined by functional magnetic resonance imaging. These findings show that stem cell transplantation into injured spinal cord can cause severe side effects and call for caution in the consideration of clinical trials.
                Bookmark

                Author and article information

                Journal
                16858392
                10.1038/nrn1964

                Chemistry
                Animals,Humans,Nerve Regeneration,physiology,Neuronal Plasticity,Spinal Cord,cytology,Spinal Cord Injuries,physiopathology,therapy

                Comments

                Comment on this article