Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The neuroprotective action of dexmedetomidine on apoptosis, calcium entry and oxidative stress in cerebral ischemia-induced rats: Contribution of TRPM2 and TRPV1 channels

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dexmedetomidine (DEX) may act as an antioxidant through regulation of TRPM2 and TRPV1 channel activations in the neurons by reducing cerebral ischemia-induced oxidative stress and apoptosis. The neuroprotective roles of DEX were tested on cerebral ischemia (ISC) in the cultures of rat primary hippocampal and DRG neurons. Fifty-six rats were divided into five groups. A placebo was given to control, sham control, and ISC groups, respectively. In the third group, ISC was induced. The DEX and ISC+DEX groups received intraperitoneal DEX (40 μg/kg) 3, 24, and 48 hours after ISC induction. DEX effectively reversed capsaicin and cumene hydroperoxide/ADP-ribose-induced TRPV1 and TRPM2 densities and cytosolic calcium ion accumulation in the neurons, respectively. In addition, DEX completely reduced ISC-induced oxidative toxicity and apoptosis through intracellular reactive oxygen species production and depolarization of mitochondrial membrane. The DEX and ISC+DEX treatments also decreased the expression levels of caspase 3, caspase 9, and poly (ADP-ribose) polymerase in the hippocampus and DRG. In conclusion, the current results are the first to demonstrate the molecular level effects of DEX on TRPM2 and TRPV1 activation. Therefore, DEX can have remarkable neuroprotective impairment effects in the hippocampus and DRG of ISC-induced rats.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.

          We report here the purification of the third protein factor, Apaf-3, that participates in caspase-3 activation in vitro. Apaf-3 was identified as a member of the caspase family, caspase-9. Caspase-9 and Apaf-1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome c and dATP, an event that leads to caspase-9 activation. Activated caspase-9 in turn cleaves and activates caspase-3. Depletion of caspase-9 from S-100 extracts diminished caspase-3 activation. Mutation of the active site of caspase-9 attenuated the activation of caspase-3 and cellular apoptotic response in vivo, indicating that caspase-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury.

            Acute ischemic and brain injury is triggered by excitotoxic elevation of intraneuronal Ca2+ followed by reoxygenation-dependent oxidative stress, metabolic failure, and cell death. Studies performed in vitro with neurons exposed to excitotoxic concentrations of glutamate demonstrate an initial rise in cytosolic [Ca2+], followed by a reduction to a normal, albeit slightly elevated concentration. This reduction in cytosolic [Ca2+] is due partially to active, respiration-dependent mitochondrial Ca2+ sequestration. Within minutes to an hour following the initial Ca2+ transient, most neurons undergo delayed Ca2+ deregulation characterized by a dramatic rise in cytosolic Ca2+. This prelethal secondary rise in Ca2+ is due to influx across the plasma membrane but is dependent on the initial mitochondrial Ca2+ uptake and associated oxidative stress. Mitochondrial Ca2+ uptake can stimulate the net production of reactive oxygen species (ROS) through activation of the membrane permeability transition, release of cytochrome c, respiratory inhibition, release of pyridine nucleotides, and loss of intramitochondrial glutathione necessary for detoxification of peroxides. Targets of mitochondrially derived ROS may include plasma membrane Ca2+ channels that mediate excitotoxic delayed Ca2+ deregulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid.

              1. TRPM2 is a Ca2+ -permeable nonselective cation channel activated by intracellular ADP-ribose (ADPR) and by hydrogen peroxide (H2O2). We investigated the modulation of TRPM2 activity by N-(p-amylcinnamoyl)anthranilic acid (ACA). ACA has previously been reported to inhibit phospholipase A2 (PLA2). 2. Using patch-clamp and calcium-imaging techniques, we show that extracellular application of 20 microM ACA completely blocked ADPR-induced whole-cell currents and H2O2-induced Ca2+ signals (IC50 = 1.7 microM) in HEK293 cells transfected with human TRPM2. Two other PLA2 inhibitors, p-bromophenacyl bromide (BPB; 100 microM) and arachidonyl trifluoromethyl ketone (20 microM), had no significant effect on ADPR-stimulated TRPM2 activity. 3. Inhibition of TRPM2 whole-cell currents by ACA was voltage independent and accelerated at decreased pH. ACA was ineffective when applied intracellularly. The single-channel conductance was not changed during ACA treatment, suggesting a reduction of TRPM2 open probability by modulating channel gating. 4. ACA (20 microM) also blocked currents through human TRPM8 and TRPC6 expressed in HEK293 cells, while BPB (100 microM) was ineffective. TRPC6-mediated currents (IC50 = 2.3 microM) and TRPM8-induced Ca2+ signals (IC50 = 3.9 microM) were blocked in a concentration-dependent manner. 5. ADPR-induced currents in human U937 cells, endogeneously expressing TRPM2 protein, were fully suppressed by 20 microM ACA. 6. Our data indicate that ACA modulates the activity of different TRP channels independent of PLA2 inhibition. Owing to its high potency and efficacy ACA can serve, in combination with other blockers, as a useful tool for studying the unknown function of TRPM2 in native cells.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 November 2016
                2016
                : 6
                Affiliations
                [1 ]Unit of Anesthesiology and Reanimation, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Süleyman Demirel , Isparta, Turkey
                [2 ]Department of Neuroscience, Institute of Health Science, University of Süleyman Demirel , Isparta, Turkey
                [3 ]Center of Neuroscience, University of Süleyman Demirel , Isparta, Turkey
                [4 ]Unit of Microbiology, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Süleyman Demirel , Isparta, Turkey
                Author notes
                Article
                srep37196
                10.1038/srep37196
                5131653
                27872485
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article